BACKGROUND: Obesity leads to low-grade inflammation in the adipose tissue and liver and neuroinflammation in the brain. Obesity-induced insulin resistance (IR) and neuroinflammation seem to intensify neurodegeneration including Alzheimer's disease. In this study, the impact of high-fat (HF) diet-induced obesity on potential neuroinflammation and peripheral IR was tested separately in males and females of THY-Tau22 mice, a model of tau pathology expressing mutated human tau protein. METHODS: Three-, 7-, and 11-month-old THY-Tau22 and wild-type males and females were tested for mobility, anxiety-like behavior, and short-term spatial memory in open-field and Y-maze tests. Plasma insulin, free fatty acid, cholesterol, and leptin were evaluated with commercial assays. Liver was stained with hematoxylin and eosin for histology. Brain sections were 3',3'-diaminobenzidine (DAB) and/or fluorescently detected for ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and tau phosphorylated at T231 (pTau (T231)), and analyzed. Insulin signaling cascade, pTau, extracellular signal-regulated kinase 1/2 (ERK1/2), and protein phosphatase 2A (PP2A) were quantified by western blotting of hippocampi of 11-month-old mice. Data are mean ± SEM and were subjected to Mann-Whitney t test within age and sex and mixed-effects analysis and Bonferroni's post hoc test for age comparison. RESULTS: Increased age most potently decreased mobility and increased anxiety in all mice. THY-Tau22 males showed impaired short-term spatial memory. HF diet increased body, fat, and liver weights and peripheral IR. HF diet-fed THY-Tau22 males showed massive Iba1+ microgliosis and GFAP+ astrocytosis in the hippocampus and amygdala. Activated astrocytes colocalized with pTau (T231) in THY-Tau22, although no significant difference in hippocampal tau phosphorylation was observed between 11-month-old HF and standard diet-fed THY-Tau22 mice. Eleven-month-old THY-Tau22 females, but not males, on both diets showed decreased synaptic and postsynaptic plasticity. CONCLUSIONS: Significant sex differences in neurodegenerative signs were found in THY-Tau22. Impaired short-term spatial memory was observed in 11-month-old THY-tau22 males but not females, which corresponded to increased neuroinflammation colocalized with pTau(T231) in the hippocampi and amygdalae of THY-Tau22 males. A robust decrease in synaptic and postsynaptic plasticity was observed in 11-month-old females but not males. HF diet caused peripheral but not central IR in mice of both sexes.
- MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- fosforylace MeSH
- hipokampus metabolismus MeSH
- inzulinová rezistence * MeSH
- krátkodobá paměť MeSH
- modely nemocí na zvířatech MeSH
- mozek metabolismus patofyziologie MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- obezita komplikace etiologie MeSH
- omezení pohyblivosti MeSH
- proteiny tau MeSH
- sexuální faktory MeSH
- stárnutí metabolismus MeSH
- tauopatie komplikace genetika MeSH
- zánět MeSH
- ztučnělá játra metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Adipose tissue is an active metabolic organ that contributes to processes such as energy storage and utilization and to the production of a number of metabolic agents, such as adipokines, which play a role in inflammation. In this review, we try to elucidate the connections between peripheral inflammation at obesity and Type 2 diabetes and the central inflammatory process. Multiple lines of evidence highlight the importance of peripheral inflammation and its link to neuroinflammation, which can lead to neurodegenerative diseases such as dementia, Alzheimer's disease (AD) and Parkinson's disease. In addition to the accumulation of misfolded amyloid beta (Aβ) peptide and the formation of the neurofibrillary tangles of hyperphosphorylated tau protein in the brain, activated microglia and reactive astrocytes are the main indicators of AD progression. They were found close to Aβ plaques in the brains of both AD patients and rodent models of Alzheimer's disease-like pathology. Cytokines are key players in pro- and anti-inflammatory processes and are also produced by microglia and astrocytes. The interplay of seemingly unrelated pathways between the periphery and the brain could, in fact, have a common denominator, with inflammation in general being a key factor affecting neuronal processes in the brain. An increased amount of white adipose tissue throughout the body seems to be an important player in pro-inflammatory processes. Nevertheless, other important factors should be studied to elucidate the pathological processes of and the relationship among obesity, Type 2 diabetes and neurodegenerative diseases.
- MeSH
- Alzheimerova nemoc metabolismus patologie MeSH
- amyloidový prekurzorový protein beta metabolismus MeSH
- diabetes mellitus 2. typu metabolismus patologie MeSH
- lidé MeSH
- mikroglie metabolismus patologie MeSH
- mozek metabolismus patologie MeSH
- obezita metabolismus patologie MeSH
- Parkinsonova nemoc metabolismus patologie MeSH
- proteiny tau metabolismus MeSH
- zánět metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Endometrial cancer is one of the most frequent gynecological malignancies present in more than 95 % of all uterine cancers. In spite of that, screening of such disease is not commonly performed in clinical practice due to enormous costs and relatively low sensitivity. Therefore, developing an effective screening test to diagnose endometrial cancer at early stages is of great importance for the clinical area of investigation. In this work, we applied urinary proteomics (i.e., bottom-up proteomic approach followed by nano HPLC-ESI-MS/MS) in patients with endometrial cancer, with respect to find proteins aimed for the early diagnostics and screening. According to the results, the significant semi-quantitative changes were observed in urinary proteome of treated patients. The proteins that may be pivotal in pathogenesis of endometrial cancer, like cadherin-1 (CDH1), vitronectin (VTN) and basement membrane specific-heparan sulphate proteoglycan core protein (HSPG2) were down-regulated, when compared to the control group. Ultimately, it can be stated that urinary proteomics has a potential for the searching of cancer protein biomarkers based on their altered concentration.
Phosducin (Pdc) is a conserved phosphoprotein that, when unphosphorylated, binds with high affinity to the complex of βγ-subunits of G protein transducin (Gtβγ). The ability of Pdc to bind to Gtβγ is inhibited through its phosphorylation at S54 and S73 within the N-terminal domain (Pdc-ND) followed by association with the scaffolding protein 14-3-3. However, the molecular basis for the 14-3-3-dependent inhibition of Pdc binding to Gtβγ is unclear. By using small-angle x-ray scattering, high-resolution NMR spectroscopy, and limited proteolysis coupled with mass spectrometry, we show that phosphorylated Pdc and 14-3-3 form a complex in which the Pdc-ND region 45-80, which forms a part of Pdc's Gtβγ binding surface and contains both phosphorylation sites, is restrained within the central channel of the 14-3-3 dimer, with both 14-3-3 binding motifs simultaneously participating in protein association. The N-terminal part of Pdc-ND is likely located outside the central channel of the 14-3-3 dimer, but Pdc residues 20-30, which are also involved in Gtβγ binding, are positioned close to the surface of the 14-3-3 dimer. The C-terminal domain of Pdc is located outside the central channel and its structure is unaffected by the complex formation. These results indicate that the 14-3-3 protein-mediated inhibition of Pdc binding to Gtβγ is based on steric occlusion of Pdc's Gtβγ binding surface.
- MeSH
- difrakce rentgenového záření MeSH
- fosfoproteiny antagonisté a inhibitory chemie MeSH
- fosforylace MeSH
- krysa rodu rattus MeSH
- maloúhlový rozptyl MeSH
- oční proteiny antagonisté a inhibitory chemie MeSH
- proteinové domény MeSH
- proteiny 14-3-3 chemie metabolismus MeSH
- proteiny vázající GTP - regulátory antagonisté a inhibitory chemie MeSH
- proteolýza MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- sekundární struktura proteinů MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function.
- MeSH
- fosfoproteiny chemie genetika metabolismus MeSH
- fosforylace MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- molekulární modely MeSH
- oční proteiny chemie genetika metabolismus MeSH
- proteiny 14-3-3 chemie genetika metabolismus MeSH
- proteiny vázající GTP - regulátory chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many aspects of protein function regulation require specific protein-protein interactions to carry out the exact biochemical and cellular functions. The highly conserved members of the 14-3-3 protein family mediate such interactions and through binding to hundreds of other proteins provide multitude of regulatory functions, thus playing key roles in many cellular processes. The 14-3-3 protein binding can affect the function of the target protein in many ways including the modulation of its enzyme activity, its subcellular localization, its structure and stability, or its molecular interactions. In this minireview, we focus on mechanisms of the 14-3-3 protein-dependent regulation of three important 14-3-3 binding partners: yeast neutral trehalase Nth1, regulator of G-protein signaling 3 (RGS3), and phosducin.
- MeSH
- DNA-glykosylasy chemie ultrastruktura MeSH
- DNA-lyasa (apurinová nebo apyrimidinová) chemie ultrastruktura MeSH
- fosfoproteiny chemie ultrastruktura MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- multienzymové komplexy chemie ultrastruktura MeSH
- oční proteiny chemie ultrastruktura MeSH
- proteiny 14-3-3 chemie ultrastruktura MeSH
- proteiny RGS chemie ultrastruktura MeSH
- proteiny vázající GTP - regulátory chemie ultrastruktura MeSH
- Schizosaccharomyces pombe - proteiny chemie ultrastruktura MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the G(t)βγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function.
- MeSH
- fluorescenční spektrometrie MeSH
- fosfatidylcholiny MeSH
- fosfoproteiny chemie metabolismus MeSH
- fosforylace MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- oční proteiny chemie metabolismus MeSH
- proteiny 14-3-3 metabolismus MeSH
- proteiny vázající GTP - regulátory chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- serin metabolismus MeSH
- terciární struktura proteinů MeSH
- tryptofan MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH