The physical properties and structure of collagen treated with high-pressure technologies have not yet been investigated in detail. The main goal of this work was to determine whether this modern gentle technology significantly changes the properties of collagen. High pressure in the range of 0-400 MPa was used, and the rheological, mechanical, thermal, and structural properties of collagen were measured. The rheological properties measured in the area of linear viscoelasticity do not statistically significantly change due to the influence of pressure or the duration of pressure exposure. In addition, the mechanical properties measured by compression between two plates are not statistically significantly influenced by pressure value or pressure hold time. The thermal properties Ton and ∆H measured by differential calorimetry depend on pressure value and pressure hold time. Results from amino acids and FTIR analyses show that exposure of collagenous gels to high pressure (400 MPa), regardless of applied time (5 and 10 min), caused only minor changes in the primary and secondary structure and preserved collagenous polymeric integrity. SEM analysis did not show changes in collagen fibril ordering orientation over longer distances after applying 400 MPa of pressure for 10 min.
- Publikační typ
- časopisecké články MeSH
Bacillus cereus is relatively resistant to pasteurization. We assessed the risk of B. cereus growth during warming and subsequent storage of pasteurized banked milk (PBM) in the warmed state using a predictive mathematical model. Holder pasteurization followed by storage below -18 °C was used. Temperature maps, water activity values, and B. cereus growth in artificially inoculated PBM were obtained during a simulation of manipulation of PBM after its release from a Human Milk Bank. As a real risk level, we chose a B. cereus concentration of 100 CFU/mL; the risk was assessed for three cases: 1. For an immediate post-pasteurization B. cereus concentration below 1 CFU/mL (level of detection); 2. For a B. cereus concentration of 10 CFU/mL, which is allowed in some countries; 3. For a B. cereus concentration of 50 CFU/mL, which is approved for milk formulas. In the first and second cases, no risk was detected after 1 h of storage in the warmed state, while after 2 h of storage, B. cereus concentrations of 102 CFU/mL were occasionally encountered. In the third case, exceeding the B. cereus concentration of 102 CFU/mL could be regularly expected after 2 h of storage. Based on these results, we recommend that post-pasteurization bacteriological analysis be performed as recommended by the European Milk Bank Association (EMBA) and using warmed PBM within 1 h after warming (no exceptions).
- Publikační typ
- časopisecké články MeSH
- MeSH
- ionizující záření MeSH
- ovoce * chemie účinky záření MeSH
- stilbeny * farmakologie chemie MeSH
- víno * analýza MeSH
- Vitis * chemie MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH