BACKGROUND: Colorectal cancer (CRC) is a common, fatal cancer. Identifying subgroups who may benefit more from intervention is of critical public health importance. Previous studies have assessed multiplicative interaction between genetic risk scores and environmental factors, but few have assessed additive interaction, the relevant public health measure. METHODS: Using resources from CRC consortia, including 45,247 CRC cases and 52,671 controls, we assessed multiplicative and additive interaction (relative excess risk due to interaction, RERI) using logistic regression between 13 harmonized environmental factors and genetic risk score, including 141 variants associated with CRC risk. RESULTS: There was no evidence of multiplicative interaction between environmental factors and genetic risk score. There was additive interaction where, for individuals with high genetic susceptibility, either heavy drinking (RERI = 0.24, 95% confidence interval [CI] = 0.13, 0.36), ever smoking (0.11 [0.05, 0.16]), high body mass index (female 0.09 [0.05, 0.13], male 0.10 [0.05, 0.14]), or high red meat intake (highest versus lowest quartile 0.18 [0.09, 0.27]) was associated with excess CRC risk greater than that for individuals with average genetic susceptibility. Conversely, we estimate those with high genetic susceptibility may benefit more from reducing CRC risk with aspirin/nonsteroidal anti-inflammatory drugs use (-0.16 [-0.20, -0.11]) or higher intake of fruit, fiber, or calcium (highest quartile versus lowest quartile -0.12 [-0.18, -0.050]; -0.16 [-0.23, -0.09]; -0.11 [-0.18, -0.05], respectively) than those with average genetic susceptibility. CONCLUSIONS: Additive interaction is important to assess for identifying subgroups who may benefit from intervention. The subgroups identified in this study may help inform precision CRC prevention.
- MeSH
- dieta MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- index tělesné hmotnosti MeSH
- interakce genů a prostředí * MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory * genetika epidemiologie MeSH
- kouření škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- logistické modely MeSH
- pití alkoholu MeSH
- rizikové faktory MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Multiple myeloma remains an incurable disease, despite the development of numerous drug classes and combinations that have contributed to improved overall survival. Immunotherapies directed against cancer cell-surface antigens, such as chimeric antigen receptor (CAR) T-cell therapy and T-cell-redirecting bispecific antibodies, have recently received regulatory approvals and shown unprecedented efficacy. However, these immunotherapies have unique mechanisms of action and toxicities that are different to previous treatments for myeloma, so experiences from clinical trials and early access programmes are essential for providing specific recommendations for management of patients, especially as these agents become available across many parts of the world. Here, we provide expert consensus clinical practice guidelines for the use of bispecific antibodies for the treatment of myeloma. The International Myeloma Working Group is also involved in the collection of prospective real-time data of patients treated with such immunotherapies, with the aim of learning continuously and adapting clinical practices to optimise the management of patients receiving immunotherapies.
- MeSH
- imunoterapie metody normy MeSH
- konsensus * MeSH
- lidé MeSH
- mnohočetný myelom * imunologie terapie farmakoterapie MeSH
- protilátky bispecifické * terapeutické užití MeSH
- protinádorové látky imunologicky aktivní terapeutické užití škodlivé účinky MeSH
- T-lymfocyty * imunologie účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- směrnice pro lékařskou praxi MeSH
Chimeric antigen receptor (CAR) T-cell therapy has shown promise in patients with late-line refractory multiple myeloma, with response rates ranging from 73 to 98%. To date, three products have been approved: Idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel), which are approved by the US Food and Drug Administration, the European Medicines Agency, Health Canada (ide-cel only), and Brazil ANVISA (cilta-cel only); and equecabtagene autoleucel (eque-cel), which was approved by the Chinese National Medical Products Administration. CAR T-cell therapy is different from previous anti-myeloma therapeutics with unique toxic effects that require distinct mitigation strategies. Thus, a panel of experts from the International Myeloma Working Group was assembled to provide guidance for clinical use of CAR T-cell therapy in myeloma. This consensus opinion is from experts in the field of haematopoietic cell transplantation, cell therapy, and multiple myeloma therapeutics.
- MeSH
- chimerické antigenní receptory * imunologie terapeutické užití MeSH
- imunoterapie adoptivní * škodlivé účinky MeSH
- konsensus * MeSH
- lidé MeSH
- mnohočetný myelom * terapie imunologie MeSH
- receptory antigenů T-buněk terapeutické užití imunologie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- směrnice pro lékařskou praxi MeSH
Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
- MeSH
- Asijci * genetika MeSH
- běloši * genetika MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus * MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- lokus kvantitativního znaku * MeSH
- mapování chromozomů MeSH
- sekvenování exomu MeSH
- studie případů a kontrol MeSH
- transkriptom MeSH
- východní Asiaté MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European and east Asian ancestry, identifying 205 independent risk associations, of which 50 were unreported. We performed integrative genomic, transcriptomic and methylomic analyses across large bowel mucosa and other tissues. Transcriptome- and methylome-wide association studies revealed an additional 53 risk associations. We identified 155 high-confidence effector genes functionally linked to CRC risk, many of which had no previously established role in CRC. These have multiple different functions and specifically indicate that variation in normal colorectal homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions determines CRC risk. Crosstissue analyses indicated that over a third of effector genes most probably act outside the colonic mucosa. Our findings provide insights into colorectal oncogenesis and highlight potential targets across tissues for new CRC treatment and chemoprevention strategies.
- MeSH
- celogenomová asociační studie MeSH
- Evropané * genetika MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- multiomika MeSH
- východní Asiaté * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
UNLABELLED: Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. SIGNIFICANCE: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
- MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci MeSH
- genetické lokusy MeSH
- index tělesné hmotnosti MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny genetika MeSH
- obezita * komplikace genetika MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice.
- MeSH
- celogenomová asociační studie MeSH
- etnicita * genetika MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory * diagnóza genetika MeSH
- lidé MeSH
- multifaktoriální dědičnost MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. METHODS: We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). RESULTS: Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value3-d.f.: 5.46 × 10-11) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value2-d.f.: 7.84 × 10-09). DISCUSSION: These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
- MeSH
- celogenomová asociační studie metody MeSH
- diabetes mellitus * genetika MeSH
- genetická predispozice k nemoci MeSH
- interakce genů a prostředí MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- mikrofilamentové proteiny genetika MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
BACKGROUND: Polygenic risk scores (PRS) which summarize individuals' genetic risk profile may enhance targeted colorectal cancer screening. A critical step towards clinical implementation is rigorous external validations in large community-based cohorts. This study externally validated a PRS-enhanced colorectal cancer risk model comprising 140 known colorectal cancer loci to provide a comprehensive assessment on prediction performance. METHODS: The model was developed using 20,338 individuals and externally validated in a community-based cohort (n = 85,221). We validated predicted 5-year absolute colorectal cancer risk, including calibration using expected-to-observed case ratios (E/O) and calibration plots, and discriminatory accuracy using time-dependent AUC. The PRS-related improvement in AUC, sensitivity and specificity were assessed in individuals of age 45 to 74 years (screening-eligible age group) and 40 to 49 years with no endoscopy history (younger-age group). RESULTS: In European-ancestral individuals, the predicted 5-year risk calibrated well [E/O = 1.01; 95% confidence interval (CI), 0.91-1.13] and had high discriminatory accuracy (AUC = 0.73; 95% CI, 0.71-0.76). Adding the PRS to a model with age, sex, family and endoscopy history improved the 5-year AUC by 0.06 (P < 0.001) and 0.14 (P = 0.05) in the screening-eligible age and younger-age groups, respectively. Using a risk-threshold of 5-year SEER colorectal cancer incidence rate at age 50 years, adding the PRS had a similar sensitivity but improved the specificity by 11% (P < 0.001) in the screening-eligible age group. In the younger-age group it improved the sensitivity by 27% (P = 0.04) with similar specificity. CONCLUSIONS: The proposed PRS-enhanced model provides a well-calibrated 5-year colorectal cancer risk prediction and improves discriminatory accuracy in the external cohort. IMPACT: The proposed model has potential utility in risk-stratified colorectal cancer prevention.
BACKGROUND: Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. METHODS: A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. RESULTS: Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10-8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20-1.30] compared with the other genotypes (OR <1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10-8) and 8q24.23 (rs7005722, P = 2.88 × 10-8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09-1.16) compared with the other genotypes (OR <1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07-1.28) compared with the other genotypes (OR <1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). CONCLUSIONS: Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. IMPACT: These findings can guide potential prevention treatments.
- MeSH
- genetická predispozice k nemoci * MeSH
- genetické lokusy MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory * epidemiologie MeSH
- kouření tabáku MeSH
- kouření genetika MeSH
- lidé MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH