Magnetic La(0.75)Sr(0.25)MnO(3) nanoparticles possessing an approximately 20-nm-thick silica shell (LSMO(0.25)@SiO(2) ) were characterised and tested for the isolation of PCR-ready bacterial DNA. The results presented here show that the nanoparticles do not interfere in PCR. DNA was apparently reversibly adsorbed on their silica shell from the aqueous phase system (16% PEG 6000-2 M NaCl). The method proposed was used for DNA isolation from complex food samples (dairy products and probiotic food supplements). The isolated DNA was compatible with PCR. The main advantages of the nanoparticles tested for routine use were their high colloidal stability allowing a more precise dosage and therefore high reproducibility of DNA isolation.
- MeSH
- DNA bakterií chemie izolace a purifikace MeSH
- Lactobacillus cytologie genetika MeSH
- lanthan chemie MeSH
- magnetické jevy MeSH
- magnetismus MeSH
- nanočástice chemie MeSH
- oxid křemičitý chemie MeSH
- oxidy chemie MeSH
- polymerázová řetězová reakce MeSH
- sloučeniny manganu chemie MeSH
- stroncium chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Maghemite (gamma-Fe2O3) nanoparticles were obtained by the coprecipitation of Fe(II) and Fe (III) salts with ammonium hydroxide followed by oxidation with sodium hypochlorite. Solution radical polymerization of N,N-dimethylacrylamide(DMAAm) in the presence of maghemite nanoparticles yielded poly(N,N-dimethylacrylamide)(PDMAAm)-coated maghemite nanoparticles. The presence of PDMAAm on the maghemite particle surface was confirmed by elemental analysis and ATR FTIR spectroscopy. Other methods of nanoparticle characterization involved scanning and transmission electron microscopy, atomic adsorption spectroscopy (AAS), and dynamic light scattering (DLS). The conversion of DMAAm during polymerization and the molecular weight of PDMAAmbound to maghemite were determined by using gas and size-exclusion chromatography, respectively. The effect of ionic 4,4'-azobis(4-cyanovaleric acid) (ACVA) initiator on nanoparticle morphology was elucidated. The nanoparticles exhibited long-term colloidal stability in water or physiological buffer. Rat and human bone marrow mesenchymal stem cells (MSCs) were labeled with uncoated and PDMAAm-coated maghemite nanoparticles and with Endorem as a control. Uptake of the nanoparticles was evaluated by Prussian Blue staining, transmission electron microscopy, T(2)-MR relaxometry, and iron content analysis. Significant differences in labeling efficiency were found for human and rat cells. PDMAAm-modified nanoparticles demonstrated a higher efficiency of intracellular uptake into human cells in comparison with that of dextran-modified (Endorem) and unmodified nanoparticles. In gelatin, even a small number of labeled cells changed the contrast in MR images. PDMAAmcoatednanoparticles provided the highest T(2) relaxivity of all the investigated particles. In vivo MR imaging ofPDMAAm-modified iron oxide-labeled rMSCs implanted in a rat brain confirmed their better resolution compared with Endorem-labeled cells.
- MeSH
- akrylamidy chemie MeSH
- barvení a značení metody MeSH
- financování organizované MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- magnetická rezonanční tomografie MeSH
- mezenchymální kmenové buňky cytologie metabolismus ultrastruktura MeSH
- nanočástice chemie MeSH
- radiační rozptyl MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- transmisní elektronová mikroskopie MeSH
- viabilita buněk MeSH
- želatina metabolismus MeSH
- železité sloučeniny chemická syntéza chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH