- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
Purpose: To investigate potential association between selected tumor markers and laboratory parameters (lactate dehydrogenase [LDH], neutrophils, hemoglobin, neutrophils, lymphocytes, C-reactive protein, albumin, carcinoembryonic antigen, and cytokeratin 19 fragment 21-1 [CYFRA 21-1]) and circulating tumor DNA (ctDNA) with survival in patients with advanced non-small cell lung cancer (NSCLC). Patients and Methods: The study encompassed 82 patients from a single center. All patients had (localy-) advanced adenocarcinomas. ctDNA was determined before starting therapy and at 6 weeks follow-up. Laboratory parameters were measured before each cycle of therapy and oncomarkers before starting the therapy as standard clinical practice. Mann-Whitney U test, Cox proportional hazards model, Fisher's exact test, and Kaplan-Meier survival estimation with Gehan-Wilcoxon test were used for statistical analysis of the corresponding variables. Results: We have confirmed predictive or prognostic significance for some of the selected laboratory markers and oncomarkers. Above all, we demonstrate a significant relationship between the levels of LDH and the oncomarker CYFRA 21-1 and the presence or absence of ctDNA at the time of diagnosis. We also demonstrate significantly lower CRP levels in patients within whom the ctDNA disappeared during treatment. A similar but statistically insignificant trend was observed for LDH. Conclusions: CYFRA 21-1, LDH and probably CRP correlate with ctDNA levels in NSCLC. Repeated measurement of these markers could thus help in early detection of disease progression in the same way as does ctDNA monitoring.
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
Background: Observation of anticancer therapy effect by monitoring of minimal residual disease (MRD) is becoming an important tool in management of non-small cell lung cancer (NSCLC). The approach is based on periodic detection and quantification of tumor-specific somatic DNA mutation in circulating tumor DNA (ctDNA) extracted from patient plasma. For such repetitive testing, complex liquid-biopsy techniques relying on ultra-deep NGS sequencing are impractical. There are other, cost-effective, methods for ctDNA analysis, typically based on quantitative PCR or digital PCR, which are applicable for detecting specific individual mutations in hotspots. While such methods are routinely used in NSCLC therapy prediction, however, extension to cover broader spectrum of mutations (e.g., in tumor suppressor genes) is required for universal longitudinal MRD monitoring. Methods: For a set of tissue samples from 81 NSCLC patients we have applied a denaturing capillary electrophoresis (DCE) for initial detection of somatic mutations within 8 predesigned PCR amplicons covering oncogenes and tumor suppressor genes. Mutation-negative samples were then subjected to a large panel NGS sequencing. For each patient mutation found in tissue was then traced over time in ctDNA by DCE. Results: In total we have detected a somatic mutation in tissue of 63 patients. For those we have then prospectively analyzed ctDNA from collected plasma samples over a period of up to 2 years. The dynamics of ctDNA during the initial chemotherapy therapy cycles as well as in the long-term follow-up matched the clinically observed response. Conclusion: Detection and quantification of tumor-specific mutations in ctDNA represents a viable complement to MRD monitoring during therapy of NSCLC patients. The presented approach relying on initial tissue mutation detection by DCE combined with NGS and a subsequent ctDNA mutation testing by DCE only represents a cost-effective approach for its routine implementation.
- MeSH
- cirkulující nádorová DNA * genetika MeSH
- DNA nádorová genetika MeSH
- elektroforéza kapilární MeSH
- lidé MeSH
- mutace genetika MeSH
- nádorové biomarkery genetika MeSH
- nádory plic * farmakoterapie MeSH
- nemalobuněčný karcinom plic * genetika terapie MeSH
- reziduální nádor MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
(1) Background: this prospective study was focused on detailed analysis of the mutation heterogeneity in colorectal lesions removed during baseline (index) colonoscopy to identify patients at high risk of early occurrence of metachronous adenomas. (2) Methods: a total of 120 patients after endoscopic therapy of advanced colorectal neoplasia size ≥10 mm (index lesion) with subsequent surveillance colonoscopy after 10-18 months were included. In total, 143 index lesions and 84 synchronous lesions in paraffin blocks were divided into up to 30 samples. In each of them, the detection of somatic mutations in 11 hot spot gene loci was performed. Statistical analysis to correlate the mutation profiles and the degree of heterogeneity of the lesions with the risk of metachronous adenoma occurrence was undertaken. (3) Results: mutation in exon 7 of the TP53 gene found in the index lesion significantly correlated with the early occurrence of metachronous adenoma (log-rank test p = 0.003, hazard ratio 2.73, 95% confidence interval 1.14-6.56). We did not find an association between the risk of metachronous adenomas and other markers monitored. (4) Conclusions: the findings of this study could lead to an adjustment of existing recommendations for surveillance colonoscopies in a specific group of patients with mutations in exon 7 of the TP53 gene in an index lesion, where a shortening of surveillance interval may be warranted.
- Publikační typ
- časopisecké články MeSH
BACKGROUND/AIM: Circulating tumour DNA (ctDNA) represents an emerging biomarker in non-small cell lung cancer (NSCLC). We focused on the combination of ctDNA and positron emission tomography/computed tomography (PET/CT) in the follow-up monitoring of advanced-stage NSCLC patients treated with chemotherapy. PATIENTS AND METHODS: Eighty-four patients were enrolled in this study. 18F-fluorodeoxyglucose PET/CT and ctDNA assessments were performed at baseline and after two cycles of chemotherapy (follow-up). RESULTS: There was a correlation of ctDNA with metabolic tumour volume (MTV), total lesion glycolysis (TLG), and iodine concentration (IC) at baseline (p=0.001, p=0.001, p=0.003) and at follow-up (p=0.006, p=0.002, p=0.001). The objective response was associated with follow-up ctDNA (p<0.001) and the change of all PET/CT parameters. ROC analyses showed that the combination of follow-up ctDNA with changes in SUVmax is very promising for the estimation of objective response and progression-free survival. CONCLUSION: The combination of ctDNA assessment with PET/CT is a promising approach for the follow-up monitoring of therapy response and prognosis estimation of advanced-stage NSCLC patients.
- MeSH
- cirkulující nádorová DNA * genetika MeSH
- fluorodeoxyglukosa F18 metabolismus terapeutické užití MeSH
- glykolýza MeSH
- lidé MeSH
- nádory plic * diagnostické zobrazování farmakoterapie genetika MeSH
- nemalobuněčný karcinom plic * diagnostické zobrazování farmakoterapie genetika MeSH
- PET/CT metody MeSH
- prognóza MeSH
- prospektivní studie MeSH
- radiofarmaka terapeutické užití MeSH
- retrospektivní studie MeSH
- tumor burden MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH