Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. Its first symptoms include hearing loss, tinnitus, and vestibular symptoms, followed by cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves. However, the clinical picture has unpredictable dynamics and currently, there are no reliable predictors of tumor behavior. Hence, it is desirable to have a fast routine method for analysis of vestibular schwannoma tissues at the molecular level. The major objective of this study was to verify whether a technique using in-sample specific protein digestion with trypsin would have the potential to provide a proteomic characterization of these pathological tissues. The achieved results showed that the use of this approach with subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of released peptides allowed a fast identification of a considerable number of proteins in two differential parts of vestibular schwannoma tissue as well as in tissues of control healthy samples. Furthermore, mathematical analysis of MS data was able to discriminate between pathological vestibular schwannoma tissues and healthy tissues. Thus, in-sample protein digestion combined with LC-MS/MS separation and identification of released specific peptides followed by mathematical analysis appears to have the potential for routine characterization of vestibular schwannomas at the molecular level. Data are available via ProteomeXchange with identifier PXD045261.
- MeSH
- chromatografie kapalinová metody MeSH
- lidé MeSH
- peptidové fragmenty * analýza chemie metabolismus MeSH
- peptidy metabolismus MeSH
- proteolýza MeSH
- proteomika metody MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- trypsin chemie MeSH
- vestibulární schwannom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
For the understanding of pathological states of bone tissues in oral surgery, it would be desirable to have the possibility to simulate these processes on bone cell models in vitro. These cultures, similarly to bone tissues, contain numerous proteins entrapped in the insoluble matrix. The major goal of this study was to verify whether a method based on direct in-matrix protein digestion could be suitable for the discrimination between different induced pathological states of bone cell models cultivated in vitro. Using in-sample specific protein digestion with trypsin followed by liquid chromatography-tandem mass spectrometry analysis of released peptides, 446 proteins (in average per sample) were identified in a bone cell in vitro model with induced cancer, 440 proteins were found in a model with induced inflammation, 451 proteins were detected in control in vitro culture, and 491 proteins were distinguished in samples of vestibular laminas of maxillary bone tissues originating from six different patients. Subsequent partial least squares - discrimination analysis of obtained liquid chromatography-tandem mass spectrometry data was able to discriminate among in vitro cultures with induced cancer, with induced inflammation, and control cultivation. Thus, the direct in-sample protein digestion by trypsin followed by liquid chromatography-tandem mass spectrometry analysis of released specific peptide fragments from the insoluble matrix and mathematical analysis of the mass spectrometry data seems to be a promising tool for the routine proteomic characterization of in vitro human bone models with induced different pathological states.
- MeSH
- chromatografie kapalinová metody MeSH
- lidé MeSH
- peptidy analýza MeSH
- proteiny chemie MeSH
- proteolýza MeSH
- proteomika metody MeSH
- stomatochirurgické výkony * MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- trypsin chemie MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Members of the genus Cronobacter are responsible for severe infections in infants and immunosuppressed individuals. Although several virulence factors have been described, many proteins involved in the pathogenesis of such infections have not yet been mapped. This study is the first to fractionate Cronobacter sakazakii cells into outer membrane, inner membrane, periplasmic, and cytosolic fractions as the basis for improved proteome mapping. A novel method was designed to prepare the fractionated samples for protein identification. The identification was performed via one-dimensional electrophoresis-liquid chromatography electrospray ionization tandem mass spectrometry. To determine the subcellular localization of the identified proteins, we developed a novel Python-based script (Subcelloc) that combines three web-based tools, PSORTb 3.0.2, CELLO 2.5, and UniProtKB. Applying this approach enabled us to identify 1,243 C. sakazakii proteins, which constitutes 28% of all predicted proteins and 49% of all theoretically expressed outer membrane proteins. These results represent a significant improvement on previous attempts to map the C. sakazakii proteome and could provide a major step forward in the identification of Cronobacter virulence factors. IMPORTANCECronobacter spp. are opportunistic pathogens that can cause rare and, in many cases, life-threatening infections, such as meningitis, necrotizing enterocolitis, and sepsis. Such infections are mainly linked to the consumption of contaminated powdered infant formula, with Cronobacter sakazakii clonal complex 4 considered the most frequent agent of serious neonatal infection. However, the pathogenesis of diseases caused by these bacteria remains unclear; in particular, the proteins involved throughout the process have not yet been mapped. To help address this, we present an improved method for proteome mapping that emphasizes the isolation and identification of membrane proteins. Specific focus was placed on the identification of the outer membrane proteins, which, being exposed to the surface of the bacterium, directly participate in host-pathogen interaction.
- MeSH
- Cronobacter sakazakii * MeSH
- Cronobacter * MeSH
- faktory virulence metabolismus MeSH
- kojenec MeSH
- lidé MeSH
- náhražky mateřského mléka mikrobiologie MeSH
- novorozenec MeSH
- potravinářská mikrobiologie MeSH
- proteiny vnější bakteriální membrány metabolismus MeSH
- proteom metabolismus MeSH
- proteomika MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Explaining species geographic distributions by macroclimate variables is the most common approach for getting mechanistic insights into large-scale diversity patterns and range shifts. However, species' traits influencing biophysical processes can produce a large decoupling from ambient air temperature, which can seriously undermine biogeographical inference. We combined stable oxygen isotope theory with a trait-based approach to assess leaf temperature during carbon assimilation (TL ) and its departure (ΔT) from daytime free air temperature during the growing season (Tgs ) for 158 plant species occurring from 3,400 to 6,150 m a.s.l. in Western Himalayas. We uncovered a general extent of temperature decoupling in the region. The interspecific variation in ΔT was best explained by the combination of plant height and δ13 C, and leaf dry matter content partly captured the variation in TL . The combination of TL and ΔT, with ΔT contributing most, explained the interspecific difference in elevational distributions. Stable oxygen isotope theory appears promising for investigating how plants perceive temperatures, a pivotal information to species biogeographic distributions.
- MeSH
- izotopy kyslíku MeSH
- listy rostlin * MeSH
- roční období MeSH
- teplota MeSH
- uhlík * MeSH
- Publikační typ
- časopisecké články MeSH
It has been firmly established that macrofungi can accumulate large amounts of heavy metals in their sporocarps. However, the mechanisms of the accumulation and storage are being uncovered only recently. We have previously documented that Russula bresadolae can accumulate over 1 g Zn kg-1 dry weight and that sequestration of a substantial proportion of overaccumulated Zn involves binding with peptides, RaZBPs, seen so far only in this species. In this work we examined Zn contents of 360 sporocarp collections from unpolluted environments covering 114 species of the genus Russula. Whilst the concentrations of Zn in most analysed species were in the range of 50-150 mg kg-1, the species of subgenera Brevipes and Compactae accumulate very low Zn (< 50 mg kg-1). We further identified five new Zn-overaccumulating species of subgenus Russula, which form with R. bresadolae a separate phylogenetic subclade in which the sporocarp Zn concentrations ranged from 326 to 845 mg kg-1. We demonstrate that R. pumila and R. ochroleuca express at least one ZBP gene and when expressed in metal-sensitive S. cerevisiae, all ZBPs protected the yeasts against Zn (and Cd) toxicity equally well. The respective ZBPs were confirmed in the native Zn-complexes of R. pumila and R. ochroleuca, which represented 80% of Zn extracted from their sporocarps. This study is the first extensive genus-wide report of metal accumulation in macrofungi, which further demonstrates that the Zn binding with cytosolic ZBP peptides is not a trait restricted only to R. bresadolae.
- MeSH
- alergeny chemie imunologie MeSH
- antigeny rostlinné chemie imunologie MeSH
- gibereliny chemie imunologie MeSH
- hmotnostní spektrometrie MeSH
- imunoglobulin E imunologie MeSH
- lidé MeSH
- potravinová alergie diagnóza imunologie MeSH
- pyl chemie imunologie MeSH
- rostlinné proteiny chemie imunologie MeSH
- sekvence aminokyselin MeSH
- zkřížené reakce imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- práce podpořená grantem MeSH
The study aims to assess variability in leaf water isotopic enrichment occurring in the field under natural conditions. We focused on seasonal variation and difference between sun-exposed and shaded leaves. Isotopic composition (δ18O, δ2H) of leaf water was monitored in a beech tree (Fagus sylvatica L.) growing in the forest-meadow ecotone together with δ18O (2H) of water compartments which are in close relation to this signal, namely twig and soil water. The sampling was carried out in approximately two-week intervals during five consecutive vegetation seasons. The δ18O (2H) data showed a distinct seasonal pattern and a consistency in relative differences between the seasons and sample categories. Leaf water was the most isotopically enriched water compartment. The leaf water enrichment decreased toward the autumn reflecting the change in δ18O (2H) of source water and evaporative demands. The soil and twig water isotopic signal was depleted against current precipitation as it partly retained the isotopic signature from winter precipitation however the seasonal pattern of soil and twig water followed that of precipitation. No significant differences between sun-exposed and shaded samples were detected. Nevertheless, the observed strong seasonal pattern of isotope composition of leaf, twig and soil water should be taken into account when using leaf water enrichment for further calculations or modeling.
Fusarium head blight (FHB) disease adversely affects grain quality and final yield in small-grain cereals including barley. In the present study, the effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage (BBCH 73) 10days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS investigated 98 protein spots revealing quantitative or qualitative differences between the experimental variants. Protein functional annotation of 93 identified protein spots revealed that most affected functional groups represent storage proteins (globulins, hordeins), followed by proteins involved in carbohydrate metabolism (α-amylase inhibitor, β-amylase, glycolytic enzymes), amino acid metabolism (aminotransferases), defence response (chitinase, xylanase inhibitor, serpins, SGT1, universal stress protein USP), protein folding (chaperones, chaperonins), redox metabolism (ascorbate-glutathione cycle), and proteasome-dependent protein degradation. The obtained results indicate adverse effects of infection on plant proteome as well as an active plant response to pathogen as shown by enhanced levels of several inhibitors of pathogen-produced degradation enzymes (α-amylase inhibitor, xylanase inhibitor, serpins), chaperones, and other stress-related proteins (SGT1, USP). Genotypic differences were found in hordein abundance between Chevron and Pedant.
Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.
- MeSH
- chlorofyl genetika metabolismus MeSH
- oxidoreduktasy působící na CH-CH vazby biosyntéza metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- smrk enzymologie genetika metabolismus MeSH
- světlo MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Norsko MeSH