Visuospatial perspective-taking (VPT) is the ability to imagine a scene from a position different from the one used in self-perspective judgments (SPJ). We typically use VPT to understand how others see the environment. VPT requires overcoming the self-perspective, and impairments in this process are implicated in various brain disorders, such as schizophrenia and autism. However, the underlying brain areas of VPT are not well distinguished from SPJ-related ones and from domain-general responses to both perspectives. In addition, hierarchical processing theory suggests that domain-specific processes emerge over time from domain-general ones. It mainly focuses on the sensory system, but outside of it, support for this hypothesis is lacking. Therefore, we aimed to spatiotemporally distinguish brain responses domain-specific to VPT from the specific ones to self-perspective, and domain-general responses to both perspectives. In particular, we intended to test whether VPT- and SPJ specific responses begin later than the general ones. We recorded intracranial EEG data from 30 patients with epilepsy who performed a task requiring laterality judgments during VPT and SPJ, and analyzed the spatiotemporal features of responses in the broad gamma band (50-150 Hz). We found VPT-specific processing in a more extensive brain network than SPJ-specific processing. Their dynamics were similar, but both differed from the general responses, which began earlier and lasted longer. Our results anatomically distinguish VPT-specific from SPJ-specific processing. Furthermore, we temporally differentiate between domain-specific and domain-general processes both inside and outside the sensory system, which serves as a novel example of hierarchical processing.
- MeSH
- elektrokortikografie * MeSH
- lidé MeSH
- mínění fyziologie MeSH
- mozek fyziologie MeSH
- schizofrenie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Spatial reference frames (RFs) play a key role in spatial cognition, especially in perception, spatial memory, and navigation. There are two main types of RFs: egocentric (self-centered) and allocentric (object-centered). Although many fMRI studies examined the neural correlates of egocentric and allocentric RFs, they could not sample the fast temporal dynamics of the underlying cognitive processes. Therefore, the interaction and timing between these two RFs remain unclear. Taking advantage of the high temporal resolution of intracranial EEG (iEEG), we aimed to determine the timing of egocentric and allocentric information processing and describe the brain areas involved. We recorded iEEG and analyzed broad gamma activity (50-150 Hz) in 37 epilepsy patients performing a spatial judgment task in a three-dimensional circular virtual arena. We found overlapping activation for egocentric and allocentric RFs in many brain regions, with several additional egocentric- and allocentric-selective areas. In contrast to the egocentric responses, the allocentric responses peaked later than the control ones in frontal regions with overlapping selectivity. Also, across several egocentric or allocentric selective areas, the egocentric selectivity appeared earlier than the allocentric one. We identified the maximum number of egocentric-selective channels in the medial occipito-temporal region and allocentric-selective channels around the intraparietal sulcus in the parietal cortex. Our findings favor the hypothesis that egocentric spatial coding is a more primary process, and allocentric representations may be derived from egocentric ones. They also broaden the dominant view of the dorsal and ventral streams supporting egocentric and allocentric space coding, respectively.
INTRODUCTION: Intracranial EEG (iEEG) data is a powerful way to map brain function, characterized by high temporal and spatial resolution, allowing the study of interactions among neuronal populations that orchestrate cognitive processing. However, the statistical inference and analysis of brain networks using iEEG data faces many challenges related to its sparse brain coverage, and its inhomogeneity across patients. METHODS: We review these challenges and develop a methodological pipeline for estimation of network structure not obtainable from any single patient, illustrated on the inference of the interaction among visual streams using a dataset of 27 human iEEG recordings from a visual experiment employing visual scene stimuli. 100 ms sliding window and multiple band-pass filtered signals are used to provide temporal and spectral resolution. For the connectivity analysis we showcase two connectivity measures reflecting different types of interaction between regions of interest (ROI): Phase Locking Value as a symmetric measure of synchrony, and Directed Transfer Function-asymmetric measure describing causal interaction. For each two channels, initial uncorrected significance testing at p < 0.05 for every time-frequency point is carried out by comparison of the data-derived connectivity to a baseline surrogate-based null distribution, providing a binary time-frequency connectivity map. For each ROI pair, a connectivity density map is obtained by averaging across all pairs of channels spanning them, effectively agglomerating data across relevant channels and subjects. Finally, the difference of the mean map value after and before the stimulation is compared to the same statistic in surrogate data to assess link significance. RESULTS: The analysis confirmed the function of the parieto-medial temporal pathway, mediating visuospatial information between dorsal and ventral visual streams during visual scene analysis. Moreover, we observed the anterior hippocampal connectivity with more posterior areas in the medial temporal lobe, and found the reciprocal information flow between early processing areas and medial place area. DISCUSSION: To summarize, we developed an approach for estimating network connectivity, dealing with the challenge of sparse individual coverage of intracranial EEG electrodes. Its application provided new insights into the interaction between the dorsal and ventral visual streams, one of the iconic dualities in human cognition.
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
Visuospatial perspective-taking (VPT) is a process of imagining what can be seen and how a scene looks from a location and orientation in space that differs from one's own. It comprises two levels that are underpinned by distinct neurocognitive processes. Level-2 VPT is often studied in relation to two other cognitive phenomena, object mental rotation (oMR) and theory of mind (ToM). With the aim to describe the broad picture of neurocognitive processes underlying level-2 VPT, here we give an overview of the recent behavioral and neuroscientific findings of level-2 VPT. We discuss its relation to level-1 VPT, which is also referred to as perspective-tracking, and the neighboring topics, oMR and ToM. Neuroscientific research shows that level-2 VPT is a diverse cognitive process, encompassing functionally distinct neural circuits. It shares brain substrates with oMR, especially those parietal brain areas that are specialized in spatial reasoning. However, compared to oMR, level-2 VPT involves additional activations in brain structures that are typically involved in ToM tasks and deal with self/other distinctions. In addition, level-2 VPT has been suggested to engage brain areas coding for internal representations of the body. Thus, the neurocognitive model underpinning level-2 VPT can be understood as a combination of visuospatial processing with social cognition and body schema representations.
- MeSH
- imaginace fyziologie MeSH
- lidé MeSH
- mozková kůra fyziologie MeSH
- teorie mysli fyziologie MeSH
- vnímání prostoru fyziologie MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Human perception and cognition are based predominantly on visual information processing. Much of the information regarding neuronal correlates of visual processing has been derived from functional imaging studies, which have identified a variety of brain areas contributing to visual analysis, recognition, and processing of objects and scenes. However, only two of these areas, namely the parahippocampal place area (PPA) and the lateral occipital complex (LOC), were verified and further characterized by intracranial electroencephalogram (iEEG). iEEG is a unique measurement technique that samples a local neuronal population with high temporal and anatomical resolution. In the present study, we aimed to expand on previous reports and examine brain activity for selectivity of scenes and objects in the broadband high-gamma frequency range (50-150 Hz). We collected iEEG data from 27 epileptic patients while they watched a series of images, containing objects and scenes, and we identified 375 bipolar channels responding to at least one of these two categories. Using K-means clustering, we delineated their brain localization. In addition to the two areas described previously, we detected significant responses in two other scene-selective areas, not yet reported by any electrophysiological studies; namely the occipital place area (OPA) and the retrosplenial complex. Moreover, using iEEG we revealed a much broader network underlying visual processing than that described to date, using specialized functional imaging experimental designs. Here, we report the selective brain areas for scene processing include the posterior collateral sulcus and the anterior temporal region, which were already shown to be related to scene novelty and landmark naming. The object-selective responses appeared in the parietal, frontal, and temporal regions connected with tool use and object recognition. The temporal analyses specified the time course of the category selectivity through the dorsal and ventral visual streams. The receiver operating characteristic analyses identified the PPA and the fusiform portion of the LOC as being the most selective for scenes and objects, respectively. Our findings represent a valuable overview of visual processing selectivity for scenes and objects based on iEEG analyses and thus, contribute to a better understanding of visual processing in the human brain.
- Publikační typ
- časopisecké články MeSH
The dissociation between egocentric and allocentric reference frames is well established. Spatial coding relative to oneself has been associated with a brain network distinct from spatial coding using a cognitive map independently of the actual position. These differences were, however, revealed by a variety of tasks from both static conditions, using a series of images, and dynamic conditions, using movements through space. We aimed to clarify how these paradigms correspond to each other concerning the neural correlates of the use of egocentric and allocentric reference frames. We review here studies of allocentric and egocentric judgments used in static two- and three-dimensional tasks and compare their results with the findings from spatial navigation studies. We argue that neural correlates of allocentric coding in static conditions but using complex three-dimensional scenes and involving spatial memory of participants resemble those in spatial navigation studies, while allocentric representations in two-dimensional tasks are connected with other perceptual and attentional processes. In contrast, the brain networks associated with the egocentric reference frame in static two-dimensional and three-dimensional tasks and spatial navigation tasks are, with some limitations, more similar. Our review demonstrates the heterogeneity of experimental designs focused on spatial reference frames. At the same time, it indicates similarities in brain activation during reference frame use despite this heterogeneity.
- MeSH
- lidé MeSH
- mapování mozku metody MeSH
- mínění fyziologie MeSH
- neuropsychologické testy MeSH
- pozornost fyziologie MeSH
- prostorová paměť fyziologie MeSH
- světelná stimulace metody MeSH
- vnímání prostoru fyziologie MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH