Alternative polyadenylation (APA) modulates mRNA processing in the 3'-untranslated regions (3' UTR), affecting mRNA stability and translation efficiency. Research into genetically regulated APA has the potential to provide insights into cancer risk. In this study, we conducted large APA-wide association studies to investigate associations between APA levels and cancer risk. Genetic models were built to predict APA levels in multiple tissues using genotype and RNA sequencing data from 1,337 samples from the Genotype-Tissue Expression project. Associations of genetically predicted APA levels with cancer risk were assessed by applying the prediction models to data from large genome-wide association studies of six common cancers among European ancestry populations: breast, ovarian, prostate, colorectal, lung, and pancreatic cancers. A total of 58 risk genes (corresponding to 76 APA sites) were associated with at least one type of cancer, including 25 genes previously not linked to cancer susceptibility. Of the identified risk APAs, 97.4% and 26.3% were supported by 3'-UTR APA quantitative trait loci and colocalization analyses, respectively. Luciferase reporter assays for four selected putative regulatory 3'-UTR variants demonstrated that the risk alleles of 3'-UTR variants, rs324015 (STAT6), rs2280503 (DIP2B), rs1128450 (FBXO38), and rs145220637 (LDHA), significantly increased the posttranscriptional activities of their target genes compared with reference alleles. Furthermore, knockdown of the target genes confirmed their ability to promote proliferation and migration. Overall, this study provides insights into the role of APA in the genetic susceptibility to common cancers. Significance: Systematic evaluation of associations of alternative polyadenylation with cancer risk reveals 58 putative susceptibility genes, highlighting the contribution of genetically regulated alternative polyadenylation of 3'UTRs to genetic susceptibility to cancer.
- MeSH
- 3' nepřekládaná oblast * genetika MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory * genetika MeSH
- polyadenylace * MeSH
- regulace genové exprese u nádorů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
- MeSH
- Asijci * genetika MeSH
- běloši * genetika MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus * MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- lokus kvantitativního znaku * MeSH
- mapování chromozomů MeSH
- sekvenování exomu MeSH
- studie případů a kontrol MeSH
- transkriptom MeSH
- východní Asiaté MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Transcriptome-wide association studies have been successful in identifying candidate susceptibility genes for colorectal cancer (CRC). To strengthen susceptibility gene discovery, we conducted a large transcriptome-wide association study and an alternative splicing transcriptome-wide association study in CRC using improved genetic prediction models and performed in-depth functional investigations. METHODS: We analyzed RNA-sequencing data from normal colon tissues and genotype data from 423 European descendants to build genetic prediction models of gene expression and alternative splicing and evaluated model performance using independent RNA-sequencing data from normal colon tissues of the Genotype-Tissue Expression Project. We applied the verified models to genome-wide association studies (GWAS) summary statistics among 58 131 CRC cases and 67 347 controls of European ancestry to evaluate associations of genetically predicted gene expression and alternative splicing with CRC risk. We performed in vitro functional assays for 3 selected genes in multiple CRC cell lines. RESULTS: We identified 57 putative CRC susceptibility genes, which included the 48 genes from transcriptome-wide association studies and 15 genes from splicing transcriptome-wide association studies, at a Bonferroni-corrected P value less than .05. Of these, 16 genes were not previously implicated in CRC susceptibility, including a gene PDE7B (6q23.3) at locus previously not reported by CRC GWAS. Gene knockdown experiments confirmed the oncogenic roles for 2 unreported genes, TRPS1 and METRNL, and a recently reported gene, C14orf166. CONCLUSION: This study discovered new putative susceptibility genes of CRC and provided novel insights into the biological mechanisms underlying CRC development.
- MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- represorové proteiny genetika MeSH
- RNA MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European and east Asian ancestry, identifying 205 independent risk associations, of which 50 were unreported. We performed integrative genomic, transcriptomic and methylomic analyses across large bowel mucosa and other tissues. Transcriptome- and methylome-wide association studies revealed an additional 53 risk associations. We identified 155 high-confidence effector genes functionally linked to CRC risk, many of which had no previously established role in CRC. These have multiple different functions and specifically indicate that variation in normal colorectal homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions determines CRC risk. Crosstissue analyses indicated that over a third of effector genes most probably act outside the colonic mucosa. Our findings provide insights into colorectal oncogenesis and highlight potential targets across tissues for new CRC treatment and chemoprevention strategies.
- MeSH
- celogenomová asociační studie MeSH
- Evropané * genetika MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- multiomika MeSH
- východní Asiaté * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND AND AIMS: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
- MeSH
- alely MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci * MeSH
- genový knockdown MeSH
- jednonukleotidový polymorfismus MeSH
- karcinogeneze genetika MeSH
- kohortové studie MeSH
- kolorektální nádory epidemiologie genetika MeSH
- lidé MeSH
- modely genetické * MeSH
- nádorové biomarkery genetika MeSH
- promotorové oblasti (genetika) genetika MeSH
- rizikové faktory MeSH
- sekvenování transkriptomu MeSH
- studie případů a kontrol MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
BACKGROUND: Risk variants identified so far for colorectal cancer explain only a small proportion of familial risk of this cancer, particularly in Asians. METHODS: We performed a genome-wide association study (GWAS) of colorectal cancer in East Asians, including 23,572 colorectal cancer cases and 48,700 controls. To identify novel risk loci, we selected 60 promising risk variants for replication using data from 58,131 colorectal cancer cases and 67,347 controls of European descent. To identify additional risk variants in known colorectal cancer loci, we performed conditional analyses in East Asians. RESULTS: An indel variant, rs67052019 at 1p13.3, was found to be associated with colorectal cancer risk at P = 3.9 × 10-8 in Asians (OR per allele deletion = 1.13, 95% confidence interval = 1.08-1.18). This association was replicated in European descendants using a variant (rs2938616) in complete linkage disequilibrium with rs67052019 (P = 7.7 × 10-3). Of the remaining 59 variants, 12 showed an association at P < 0.05 in the European-ancestry study, including rs11108175 and rs9634162 at P < 5 × 10-8 and two variants with an association near the genome-wide significance level (rs60911071, P = 5.8 × 10-8; rs62558833, P = 7.5 × 10-8) in the combined analyses of Asian- and European-ancestry data. In addition, using data from East Asians, we identified 13 new risk variants at 11 loci reported from previous GWAS. CONCLUSIONS: In this large GWAS, we identified three novel risk loci and two highly suggestive loci for colorectal cancer risk and provided evidence for potential roles of multiple genes and pathways in the etiology of colorectal cancer. In addition, we showed that additional risk variants exist in many colorectal cancer risk loci identified previously. IMPACT: Our study provides novel data to improve the understanding of the genetic basis for colorectal cancer risk.
- MeSH
- Asijci genetika MeSH
- celogenomová asociační studie MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- genetické lokusy * MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory epidemiologie genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 1 genetika MeSH
- mutace INDEL MeSH
- rizikové faktory MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vazebná nerovnováha MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geografické názvy
- Čína MeSH
- Japonsko MeSH
- Korejská republika MeSH