Gout is a chronic disease that is caused by an innate immune response to deposited monosodium urate crystals in the setting of hyperuricemia. Here, we provide insights into the molecular mechanism of the poorly understood inflammatory component of gout from a genome-wide association study (GWAS) of 2.6 million people, including 120,295 people with prevalent gout. We detected 377 loci and 410 genetically independent signals (149 previously unreported loci in urate and gout). An additional 65 loci with signals in urate (from a GWAS of 630,117 individuals) but not gout were identified. A prioritization scheme identified candidate genes in the inflammatory process of gout, including genes involved in epigenetic remodeling, cell osmolarity and regulation of NOD-like receptor protein 3 (NLRP3) inflammasome activity. Mendelian randomization analysis provided evidence for a causal role of clonal hematopoiesis of indeterminate potential in gout. Our study identifies candidate genes and molecular processes in the inflammatory pathogenesis of gout suitable for follow-up studies.
- MeSH
- celogenomová asociační studie * MeSH
- dna (nemoc) * genetika MeSH
- genetická predispozice k nemoci * MeSH
- hyperurikemie genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kyselina močová * MeSH
- lidé MeSH
- mendelovská randomizace MeSH
- protein NLRP3 genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Sarcoidosis is a genetically complex systemic inflammatory disease that affects multiple organs. We present a GWAS of a Japanese cohort (700 sarcoidosis cases and 886 controls) with replication in independent samples from Japan (931 cases and 1,042 controls) and the Czech Republic (265 cases and 264 controls). We identified three loci outside the HLA complex, CCL24, STYXL1-SRRM3, and C1orf141-IL23R, which showed genome-wide significant associations (P < 5.0 × 10-8) with sarcoidosis; CCL24 and STYXL1-SRRM3 were novel. The disease-risk alleles in CCL24 and IL23R were associated with reduced CCL24 and IL23R expression, respectively. The disease-risk allele in STYXL1-SRRM3 was associated with elevated POR expression. These results suggest that genetic control of CCL24, POR, and IL23R expression contribute to the pathogenesis of sarcoidosis. We speculate that the CCL24 risk allele might be involved in a polarized Th1 response in sarcoidosis, and that POR and IL23R risk alleles may lead to diminished host defense against sarcoidosis pathogens.
- MeSH
- alely MeSH
- celogenomová asociační studie MeSH
- chemokin CCL24 genetika metabolismus MeSH
- genetická predispozice k nemoci * MeSH
- genetické asociační studie MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- odds ratio MeSH
- receptory interleukinů genetika metabolismus MeSH
- sarkoidóza diagnóza etiologie metabolismus MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Japonsko MeSH
OBJECTIVES: Genome-wide meta-analyses of clinically defined gout were performed to identify subtype-specific susceptibility loci. Evaluation using selection pressure analysis with these loci was also conducted to investigate genetic risks characteristic of the Japanese population over the last 2000-3000 years. METHODS: Two genome-wide association studies (GWASs) of 3053 clinically defined gout cases and 4554 controls from Japanese males were performed using the Japonica Array and Illumina Array platforms. About 7.2 million single-nucleotide polymorphisms were meta-analysed after imputation. Patients were then divided into four clinical subtypes (the renal underexcretion type, renal overload type, combined type and normal type), and meta-analyses were conducted in the same manner. Selection pressure analyses using singleton density score were also performed on each subtype. RESULTS: In addition to the eight loci we reported previously, two novel loci, PIBF1 and ACSM2B, were identified at a genome-wide significance level (p<5.0×10-8) from a GWAS meta-analysis of all gout patients, and other two novel intergenic loci, CD2-PTGFRN and SLC28A3-NTRK2, from normal type gout patients. Subtype-dependent patterns of Manhattan plots were observed with subtype GWASs of gout patients, indicating that these subtype-specific loci suggest differences in pathophysiology along patients' gout subtypes. Selection pressure analysis revealed significant enrichment of selection pressure on ABCG2 in addition to ALDH2 loci for all subtypes except for normal type gout. CONCLUSIONS: Our findings on subtype GWAS meta-analyses and selection pressure analysis of gout will assist elucidation of the subtype-dependent molecular targets and evolutionary involvement among genotype, phenotype and subtype-specific tailor-made medicine/prevention of gout and hyperuricaemia.
- MeSH
- ABC transportér z rodiny G, člen 2 genetika MeSH
- celogenomová asociační studie * MeSH
- dna (nemoc) epidemiologie genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci etnologie MeSH
- genetické lokusy MeSH
- genotyp MeSH
- hodnocení rizik MeSH
- incidence MeSH
- lidé MeSH
- mitochondriální aldehyddehydrogenasa genetika MeSH
- nádorové proteiny genetika MeSH
- prognóza MeSH
- referenční hodnoty MeSH
- studie případů a kontrol MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Japonsko MeSH
OBJECTIVE: The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. METHODS: We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). RESULTS: This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10-8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three 'gout vs AHUA GWAS'-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. CONCLUSIONS: This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals.
- MeSH
- ABC transportér z rodiny G, člen 2 genetika MeSH
- asymptomatické nemoci MeSH
- celogenomová asociační studie MeSH
- dna (nemoc) krev genetika MeSH
- dospělí MeSH
- genetické lokusy genetika MeSH
- genotypizační techniky MeSH
- hyperurikemie genetika MeSH
- kontaktiny genetika MeSH
- kyselina močová krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- mitochondriální aldehyddehydrogenasa genetika MeSH
- nádorové proteiny genetika MeSH
- proteiny usnadňující transport glukosy genetika MeSH
- rizikové faktory MeSH
- zinkové prsty genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. RESULTS: In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10(-8)): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10(-8)). CONCLUSIONS: Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia.
- MeSH
- Asijci genetika MeSH
- běloši genetika MeSH
- celogenomová asociační studie * MeSH
- dna (nemoc) klasifikace genetika MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- genetické lokusy MeSH
- genotyp MeSH
- histony genetika MeSH
- jednonukleotidový polymorfismus MeSH
- kotransportní proteiny pro sodík a fosfát - typ I genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- přenašeče organických aniontů genetika MeSH
- proteiny přenášející kationty genetika MeSH
- proteiny přenášející organické kationty genetika MeSH
- proteiny genetika MeSH
- původní obyvatelé Havajských a ostatních tichomořských ostrovů genetika MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- validační studie MeSH
- Geografické názvy
- Japonsko MeSH
Objective: Previous studies have suggested an association between gout susceptibility and common dysfunctional variants in ATP-binding cassette transporter subfamily G member 2/breast cancer resistance protein (ABCG2/BCRP), including rs72552713 (Q126X) and rs2231142 (Q141K). However, the association of rare ABCG2 variants with gout is unknown. Therefore, we investigated the effects of rare ABCG2 variants on gout susceptibility in this study. Methods: We sequenced the exons of ABCG2 in 480 patients with gout and 480 healthy controls (Japanese males). We also performed functional analyses of non-synonymous variants of ABCG2 and analysed the correlation between urate transport function and scores from the protein prediction algorithms (Sorting Intolerant from Tolerant (SIFT) and Polymorphism Phenotyping v2 (PolyPhen-2)). Stratified association analyses and multivariate logistic regression analysis were performed to evaluate the effects of rare and common ABCG2 variants on gout susceptibility. Results: We identified 3 common and 19 rare non-synonymous variants of ABCG2. SIFT scores were significantly correlated with the urate transport function, although some ABCG2 variants showed inconsistent scores. When the effects of common variants were removed by stratified association analysis, the rare variants of ABCG2 were associated with a significantly increased risk of gout (OR=3.2, p=6.4×10-3). Multivariate logistic regression analysis revealed that the size effect of these rare ABCG2 variants (OR=2.7, p=3.0×10-3) was similar to that of the common variants, Q126X (OR=3.4, p=3.2×10-6) and Q141K (OR=2.3, p=2.7×10-16). Conclusions: This study revealed that multiple common and rare variants of ABCG2 are independently associated with gout. These results could support both the 'Common Disease, Common Variant' and 'Common Disease, Multiple Rare Variant' hypotheses for the association between ABCG2 and gout susceptibility.
- Publikační typ
- časopisecké články MeSH