- MeSH
- buněčné struktury fyziologie metabolismus MeSH
- chondrogeneze fyziologie MeSH
- kloubní artrometrie metody MeSH
- kosterní svaly fyziologie metabolismus růst a vývoj MeSH
- lidé MeSH
- muskuloskeletální systém * anatomie a histologie metabolismus MeSH
- senioři nad 80 let MeSH
- senioři fyziologie MeSH
- stárnutí buněk fyziologie MeSH
- stárnutí fyziologie MeSH
- Check Tag
- lidé MeSH
- senioři nad 80 let MeSH
- senioři fyziologie MeSH
- Publikační typ
- přehledy MeSH
- MeSH
- biologie buňky * MeSH
- buněčná smrt fyziologie genetika MeSH
- buněčné dělení fyziologie genetika MeSH
- buněčné struktury fyziologie MeSH
- buněčný cyklus fyziologie genetika MeSH
- chromozomy fyziologie genetika MeSH
- Eukaryota fyziologie ultrastruktura MeSH
- genetické jevy fyziologie genetika MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
INTRODUCTION Traumatic bone injuries or pathological processes may sometimes result in very extensive bone defects. Currently, the standard procedure applied in clinical humane as well as veterinary medicine to fill a bone defect is the autogenous bone graft which, however, necessitates a more invasive procedure for the patient and in the cases of extensive defects it fails to provide adequate amount of graft. Synthetic bone replacements can be used with no further burden for the patient and can simultaneously be used as the carriers for bioactive molecules or therapeutic drugs. For clinical use, an easy and simple application is one of the requirements that have to be taken into consideration. These requirements are best satisfied by preparations in the form of gel, which may be injected into the defects of various shapes even through minimal surgical approach. MATERIAL AND METHODS Synthetic transparent PGD-AlphaProA hydro-peptide-gel was used as a basis to develop a composite hydrogel scaffold. This gel was enriched by cryogenically ground poly- -caprolactone nanofibers (PCL) in a ratio of 1 ml of gel to 16 μg of nanofibres. In experimental animals (laboratory rat Wistar, n=20), a single regular circular defect of 1.5 mm in diameter was drilled by a low speed drill machine across the whole width of distal femur diaphysis, identically in both the hind legs. In the right hindleg, this defect was filled by injection of 0.05 ml of the composite peptide gel with nanofibers (experimental defect). In the contralateral limb a similar defect was left untreated, without filling (control defect), for spontaneous healing. The group of experimental animals was subsequently divided into four sub-groups (A, B, C, D) for the purpose of further follow-up. One week after the surgical implantation, in the first group of experimental animals (Group A; n = 5) lege artis euthanasia was performed, a radiological examination of both the hind legs was carried out and a sample of the bone from both the control and experimental defect was collected for histologic examination. The other groups of experimental animals were evaluated similarly at 2, 4 and 6 weeks after the surgical procedure (Group B, C, D; n = 5). These groups of experimental animals were assessed using various histological techniques by two independent pathologists. RESULTS A difference between the control and the experimental bone defect was observed only at the healing stage at two weeks after the implantation, when a tendency for greater formation of new bone trabeculas was seen in the defect treated with the composite hydro-peptide-gel with PCL nanofibers. The results show a slightly higher angiogenesis and cellularity at the bone defect site with an increase of newly formed bone tissue and faster colonisation of lamellar bone structures by bone marrow cells at early stages of the healing process (1-2 weeks old defect). In the experimental and control groups, at the later stage of healing (4-6 weeks old defect), the process of healing and bone modelling at the defect site shows no detectable morphological differences. CONCLUSIONS The experimental use of hydro-peptide-gel with PCL nanofibers in vivo in laboratory rats shows very good applicability into the defect site and, compared to the untreated defect within two weeks after the implantation, accelerates the bone healing. This fact could be an advantage especially at the early stage of healing, and thus accelerate the healing of more extensive defects. Key words: peptide gel, polycaprolactone, PCL, replacement, bone, healing, scaffold, nanofibers, biomaterial.
- MeSH
- biokompatibilní materiály škodlivé účinky terapeutické užití MeSH
- buněčné struktury fyziologie MeSH
- femur chirurgie MeSH
- hojení fraktur fyziologie MeSH
- kosti a kostní tkáň abnormality cytologie zranění patologie MeSH
- kostní náhrady škodlivé účinky terapeutické užití MeSH
- krysa rodu rattus MeSH
- látky indukující angiogenezi MeSH
- modely u zvířat MeSH
- nanovlákna terapeutické užití MeSH
- nemoci kostí patologie terapie MeSH
- polyestery aplikace a dávkování MeSH
- potkani Wistar MeSH
- transplantace kostí metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Spontaneous mechanical oscillations were predicted and experimentally proven on almost every level of cellular structure. Besides morphogenetic potential of oscillatory mechanical force, oscillations may drive vibrations of electrically polar structures or these structures themselves may oscillate on their own natural frequencies. Vibrations of electric charge will generate oscillating electric field, role of which in morphogenesis is discussed in this paper. This idea is demonstrated in silico on the conformation of two growing microtubules.
Psychiatrie. 1211-7579 ; Roč. 12, suppl. 2, 2008
58 s. : il., tab. ; 30 cm
- MeSH
- biologická psychiatrie metody trendy MeSH
- buněčné struktury fyziologie MeSH
- duševní poruchy terapie MeSH
- intracelulární prostor fyziologie MeSH
- kongresy jako téma MeSH
- Publikační typ
- kongresy MeSH
- sborníky MeSH
- Konspekt
- Psychiatrie
- NLK Obory
- psychiatrie
- biologie
- MeSH
- biologie buňky trendy MeSH
- biologie dějiny trendy MeSH
- buněčná membrána fyziologie genetika metabolismus MeSH
- buněčné jádro fyziologie genetika MeSH
- buněčné struktury fyziologie metabolismus MeSH
- centrozom fyziologie MeSH
- chloroplasty genetika metabolismus MeSH
- Golgiho aparát fyziologie MeSH
- lékařská genetika metody trendy MeSH
- mitochondrie genetika metabolismus MeSH
- peroxizomy fyziologie MeSH