The insulin-like growth factor (IGF) is involved in the regulation of growth and metabolism. The aim of this study was to determine selected parameters of IGF system at systemic and local levels [subcutaneous (SAT) and visceral adipose tissue (VAT)] to assess its possible role in gestational diabetes mellitus (GDM). 37 pregnant women (21 with GDM and 16 without GDM) and 15 age-matched non-pregnant females were included in the study. Blood samples were taken in 28-32 and 36-38 weeks of gestation and 6-12 months after delivery. SAT and VAT samples were obtained during delivery or surgery. Compared with non-pregnant women, serum IGF-1 and IGFBP-3 were increased in both groups of pregnant women. IGF-2 was elevated only in GDM women from 36 weeks of gestation culminating 6 months after delivery (p=0.003). Serum IGFBP-3 was increased and IGFBP-4 decreased in GDM women vs. pregnant women without GDM during the whole study (IGFBP-3: p?0.001 for GDM vs. non-GDM; IGFBP-4: p=0.004 for GDM vs. non-GDM). Pregnant women with GDM had decreased mRNA expression of IGF-1, IGF-1R and IGF-2R and IGFBP-4 in VAT and IGF-1R in SAT compared to pregnant women without GDM. Changes in local activity of IGF are associated with the development of GDM.
- MeSH
- biologické markery krev MeSH
- časové faktory MeSH
- dospělí MeSH
- gestační diabetes diagnóza genetika krev MeSH
- gestační stáří MeSH
- krevní glukóza metabolismus MeSH
- lidé MeSH
- nitrobřišní tuk metabolismus MeSH
- podkožní tuk metabolismus MeSH
- poporodní období krev MeSH
- proteiny vázající insulinu podobné růstové faktory genetika krev MeSH
- receptory somatomedinů genetika krev MeSH
- regulace genové exprese MeSH
- somatomediny genetika metabolismus MeSH
- studie případů a kontrol MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
- MeSH
- insulinu podobný růstový faktor I chemie genetika metabolismus MeSH
- inzulin agonisté metabolismus MeSH
- kinetika MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- receptor inzulinu chemie genetika metabolismus MeSH
- receptory somatomedinů chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively) are protein hormones involved not only in normal growth and development but also in life span regulation and cancer. They exert their functions mainly through the IGF-1R or by binding to isoform A of the insulin receptor (IR-A). The development of IGF-1 and IGF-2 antagonists is of great clinical interest. Mutations of A4 and A8 sites of human insulin lead to disproportionate effects on hormone IR binding and activation. Here, we systematically modified IGF-1 sites 45, 46, and 49 and IGF-2 sites 45 and 48, which correspond, or are close, to insulin sites A4 and A8. The IGF-1R and IR-A binding and autophosphorylation potencies of these analogues were characterized. They retained the main IGF-1R-related properties, but the hormones with His49 in IGF-1 and His48 in IGF-2 showed significantly higher affinities for IR-A and for IR-B, being the strongest IGF-1- and IGF-2-like binders of these receptors ever reported. All analogues activated IR-A and IGF-1R without major discrepancies in their binding affinities. This study revealed that IR-A and IGF-1R contain specific sites, likely parts of their so-called sites 2', which can interact differently with specifically modified IGF analogues. Moreover, a clear importance of IGF-2 site 44 for effective hormone folding was also observed. These findings may facilitate novel and rational engineering of new hormone analogues for IR-A and IGF-1R studies and for potential medical applications.
- MeSH
- fosforylace MeSH
- insulinu podobný růstový faktor I chemie genetika MeSH
- insulinu podobný růstový faktor II chemie genetika MeSH
- inzulin chemie metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární evoluce MeSH
- mutace MeSH
- protein - isoformy MeSH
- receptor inzulinu chemie metabolismus MeSH
- receptory somatomedinů chemie genetika MeSH
- signální transdukce MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- cytoskelet fyziologie MeSH
- fluorescenční protilátková technika MeSH
- genetická variace MeSH
- krysa rodu rattus MeSH
- neurony chemie metabolismus MeSH
- receptory somatomedinů fyziologie genetika metabolismus MeSH
- stárnutí metabolismus MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH