Spinal cord injury is a devastating medical condition with no effective treatment. One approach to SCI treatment may be provided by stem cells (SCs). Studies have mainly focused on the transplantation of exogenous SCs, but the induction of endogenous SCs has also been considered as an alternative. While the differentiation potential of neural stem cells in the brain neurogenic regions has been known for decades, there are ongoing debates regarding the multipotent differentiation potential of the ependymal cells of the central canal in the spinal cord (SCECs). Following spinal cord insult, SCECs start to proliferate and differentiate mostly into astrocytes and partly into oligodendrocytes, but not into neurons. However, there are several approaches concerning how to increase neurogenesis in the injured spinal cord, which are discussed in this review. The potential treatment approaches include drug administration, the reduction of neuroinflammation, neuromodulation with physical factors and in vivo reprogramming.
- MeSH
- Cell Differentiation MeSH
- Humans MeSH
- Spinal Cord MeSH
- Neural Stem Cells * MeSH
- Neurogenesis MeSH
- Neurons MeSH
- Spinal Cord Injuries * therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
KEY POINTS: Spinal treatment can restore diaphragm function in all animals 1 month following C2 hemisection induced paralysis. Greater recovery occurs the longer after injury the treatment is applied. Through advanced assessment of muscle mechanics, innovative histology and oxygen tension modelling, we have comprehensively characterized in vivo diaphragm function and phenotype. Muscle work loops reveal a significant deficit in diaphragm functional properties following chronic injury and paralysis, which are normalized following restored muscle activity caused by plasticity-induced spinal reconnection. Injury causes global and local alterations in diaphragm muscle vascular supply, limiting oxygen diffusion and disturbing function. Restoration of muscle activity reverses these alterations, restoring oxygen supply to the tissue and enabling recovery of muscle functional properties. There remain metabolic deficits following restoration of diaphragm activity, probably explaining only partial functional recovery. We hypothesize that these deficits need to be resolved to restore complete respiratory motor function. ABSTRACT: Months after spinal cord injury (SCI), respiratory deficits remain the primary cause of morbidity and mortality for patients. It is possible to induce partial respiratory motor functional recovery in chronic SCI following 2 weeks of spinal neuroplasticity. However, the peripheral mechanisms underpinning this recovery are largely unknown, limiting development of new clinical treatments with potential for complete functional restoration. Utilizing a rat hemisection model, diaphragm function and paralysis was assessed and recovered at chronic time points following trauma through chondroitinase ABC induced neuroplasticity. We simulated the diaphragm's in vivo cyclical length change and activity patterns using the work loop technique at the same time as assessing global and local measures of the muscles histology to quantify changes in muscle phenotype, microvascular composition, and oxidative capacity following injury and recovery. These data were fed into a physiologically informed model of tissue oxygen transport. We demonstrate that hemidiaphragm paralysis causes muscle fibre hypertrophy, maintaining global oxygen supply, although it alters isolated muscle kinetics, limiting respiratory function. Treatment induced recovery of respiratory activity normalized these effects, increasing oxygen supply, restoring optimal diaphragm functional properties. However, metabolic demands of the diaphragm were significantly reduced following both injury and recovery, potentially limiting restoration of normal muscle performance. The mechanism of rapid respiratory muscle recovery following spinal trauma occurs through oxygen transport, metabolic demand and functional dynamics of striated muscle. Overall, these data support a systems-wide approach to the treatment of SCI, and identify new targets to mediate complete respiratory recovery.
- MeSH
- Diaphragm * MeSH
- Kinetics MeSH
- Rats MeSH
- Oxygen MeSH
- Humans MeSH
- Spinal Cord MeSH
- Phrenic Nerve MeSH
- Recovery of Function MeSH
- Spinal Cord Injuries * MeSH
- Rats, Sprague-Dawley MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Traumatic spinal cord injury (SCI) is untreatable and remains the leading cause of disability. Neuroprotection and recovery after SCI can be partially achieved by rapamycin (RAPA) treatment, an inhibitor of mTORC1, complex 1 of the mammalian target of rapamycin (mTOR) pathway. However, mechanisms regulated by the mTOR pathway are not only controlled by mTORC1, but also by a second mTOR complex (mTORC2). Second-generation inhibitor, pp242, inhibits both mTORC1 and mtORC2, which led us to explore its therapeutic potential after SCI and compare it to RAPA treatment. In a rat balloon-compression model of SCI, the effect of daily RAPA (5 mg/kg; IP) and pp242 (5 mg/kg; IP) treatment on inflammatory responses and autophagy was observed. We demonstrated inhibition of the mTOR pathway after SCI through analysis of p-S6, p-Akt, and p-4E-BP1 levels. Several proinflammatory cytokines were elevated in pp242-treated rats, while RAPA treatment led to a decrease in proinflammatory cytokines. Both RAPA and pp242 treatments caused an upregulation of LC3B and led to improved functional and structural recovery in acute SCI compared to the controls, however, a greater axonal sprouting was seen following RAPA treatment. These results suggest that dual mTOR inhibition by pp242 after SCI induces distinct mechanisms and leads to recovery somewhat inferior to that following RAPA treatment.
- Publication type
- Journal Article MeSH
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
- MeSH
- Humans MeSH
- Organelles metabolism pathology MeSH
- Spinal Cord Injuries * metabolism pathology therapy MeSH
- Nerve Regeneration * MeSH
- Growth Cones metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Despite the variety of experimental models of spinal cord injury (SCI) currently used, the model of the ventral compression cord injury, which is commonly seen in humans, is very limited. Ventral balloon compression injury reflects the common anatomical mechanism of a human lesion and has the advantage of grading the injury severity by controlling the inflated volume of the balloon. In this study, ventral compression of the SCI was performed by the anterior epidural placement of the balloon of a 2F Fogarty's catheter, via laminectomy, at the level of T10. The balloon was rapidly inflated with 10 or 15 μL of saline and rested in situ for 5 min. The severity of the lesion was assessed by behavioral and immunohistochemical tests. Compression with the volume of 15 μL resulted in severe motor and sensory deficits represented by the complete inability to move across a horizontal ladder, a final Basso, Beattie and Bresnahan (BBB) score of 7.4 and a decreased withdrawal time in the plantar test (11.6 s). Histology and immunohistochemistry revealed a significant loss of white and gray matter with a loss of motoneuron, and an increased size of astrogliosis. An inflation volume of 10 μL resulted in a mild transient deficit. There are no other balloon compression models of ventral spinal cord injury. This study provided and validated a novel, easily replicable model of the ventral compression SCI, introduced by an inflated balloon of Fogarty ́s catheter. For a severe incomplete deficit, an inflated volume should be maintained at 15 μL.
- Publication type
- Journal Article MeSH
The structure of neurons in the central auditory system is vulnerable to various kinds of acoustic exposures during the critical postnatal developmental period. Here we explored long-term effects of exposure to an acoustically enriched environment (AEE) during the third and fourth weeks of the postnatal period in rat pups. AEE consisted of a spectrally and temporally modulated sound of moderate intensity, reinforced by a behavioral paradigm. At the age of 3-6 months, a Golgi-Cox staining was used to evaluate the morphology of neurons in the inferior colliculus (IC), the medial geniculate body (MGB), and the auditory cortex (AC). Compared to controls, rats exposed to AEE showed an increased mean dendritic length and volume and the soma surface in the external cortex and the central nucleus of the IC. The spine density increased in both the ventral and dorsal divisions of the MGB. In the AC, the total length and volume of the basal dendritic segments of pyramidal neurons and the number and density of spines on these dendrites increased significantly. No differences were found on apical dendrites. We also found an elevated number of spines and spine density in non-pyramidal neurons. These results show that exposure to AEE during the critical developmental period can induce permanent changes in the structure of neurons in the central auditory system. These changes represent morphological correlates of the functional plasticity, such as an improvement in frequency tuning and synchronization with temporal parameters of acoustical stimuli.
- MeSH
- Acoustic Stimulation MeSH
- Inferior Colliculi cytology physiology MeSH
- Dendritic Spines physiology MeSH
- Dendrites physiology MeSH
- Rats MeSH
- Geniculate Bodies cytology physiology MeSH
- Neurons cytology physiology MeSH
- Neuronal Plasticity physiology MeSH
- Animals, Newborn MeSH
- Rats, Long-Evans MeSH
- Auditory Pathways cytology physiology MeSH
- Auditory Cortex cytology physiology MeSH
- Cell Shape physiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ. However, in the CNS, axonal PIP3 decreases with development at the time when axon transport declines and regenerative competence is lost. Overexpressing p110α in CNS neurons had no effect; however, expression of p110δ restored axonal PIP3 and increased regenerative axon transport. p110δ expression enhanced CNS regeneration in both rat and human neurons and in transgenic mice, functioning in the same way as the hyperactivating H1047R mutation of p110α. Furthermore, viral delivery of p110δ promoted robust regeneration after optic nerve injury. These findings establish a deficit of axonal PIP3 as a key reason for intrinsic regeneration failure and demonstrate that native p110δ facilitates axon regeneration by functioning in a hyperactive fashion.
- MeSH
- Axons * MeSH
- Central Nervous System MeSH
- Adult MeSH
- Phosphatidylinositol 3-Kinases * MeSH
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Neurons MeSH
- Nerve Regeneration MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Spinal cord injury (SCI) is a serious trauma, which often results in a permanent loss of motor and sensory functions, pain and spasticity. Despite extensive research, there is currently no available therapy that would restore the lost functions after SCI in human patients. Advanced treatments use regenerative medicine or its combination with various interdisciplinary approaches such as tissue engineering or biophysical methods. This review summarizes and critically discusses the research from specific interdisciplinary fields in SCI treatment such as the development of biomaterials as scaffolds for tissue repair, and using a magnetic field for targeted cell delivery. We compare the treatment effects of synthetic non-degradable methacrylate-based hydrogels and biodegradable biological scaffolds based on extracellular matrix. The systems using magnetic fields for magnetically guided delivery of stem cells loaded with magnetic nanoparticles into the lesion site are then suggested and discussed.
- MeSH
- Biocompatible Materials pharmacology therapeutic use MeSH
- Hydrogels therapeutic use MeSH
- Humans MeSH
- Magnetic Field Therapy methods trends MeSH
- Spinal Cord Injuries physiopathology therapy MeSH
- Nerve Regeneration drug effects physiology MeSH
- Stem Cell Transplantation methods trends MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
- MeSH
- Antioxidants metabolism toxicity MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Ascorbic Acid metabolism toxicity MeSH
- Magnetite Nanoparticles toxicity MeSH
- Macrophages, Peritoneal drug effects metabolism MeSH
- Rats, Wistar MeSH
- Drug Synergism MeSH
- Cell Survival drug effects physiology MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The transplantation of Wharton's jelly derived mesenchymal stromal cells (WJ-MSCs) possesses therapeutic potential for the treatment of a spinal cord injury (SCI). Generally, the main effect of MSCs is mediated by their paracrine potential. Therefore, application of WJ-MSC derived conditioned media (CM) is an acknowledged approach for how to bypass the limited survival of transplanted cells. In this study, we compared the effect of human WJ-MSCs and their CM in the treatment of SCI in rats. WJ-MSCs and their CM were intrathecally transplanted in the three consecutive weeks following the induction of a balloon compression lesion. Behavioral analyses were carried out up to 9 weeks after the SCI and revealed significant improvement after the treatment with WJ-MSCs and CM, compared to the saline control. Both WJ-MSCs and CM treatment resulted in a higher amount of spared gray and white matter and enhanced expression of genes related to axonal growth. However, only the CM treatment further improved axonal sprouting and reduced the number of reactive astrocytes in the lesion area. On the other hand, WJ-MSCs enhanced the expression of inflammatory and chemotactic markers in plasma, which indicates a systemic immunological response to xenogeneic cell transplantation. Our results confirmed that WJ-MSC derived CM offer an alternative to direct stem cell transplantation for the treatment of SCI.
- MeSH
- Cytokines blood MeSH
- Rats MeSH
- Culture Media, Conditioned pharmacology MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mesenchymal Stem Cells cytology MeSH
- Spinal Cord Injuries blood physiopathology therapy MeSH
- Rats, Wistar MeSH
- Mesenchymal Stem Cell Transplantation * methods MeSH
- Wharton Jelly cytology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH