"NV15-33629A"
Dotaz
Zobrazit nápovědu
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
Nestr.
Projekt využívá znalosti, dovednosti a vybavení spoluřešitelů z oblasti ortopedie a traumatologie (2LF UK) a biotribologie (ČVUT v Praze) pro vytvoření nové generace kompozitních prostředků pro biotribologickou léčbu. Projekt vychází z dosavadních zkušeností řešitelů v oblasti výzkumu procesů tření v synoviálních kloubech, při kterých se identifikovala klíčová role amfifilních struktur pro procesy mezní lubrikace v lidském těle. Interdisciplinární tým, který bude vytvořen v rámci řešení daného projektu, umožní komplexní vývoj zdravotnických prostředků založených na přípravě nových amfilních produktů, testování a ověření jejich biotribologických vlastností v krátkodobých a dlouhodobých simulačních testech s uvážením formy následné klinické aplikace. Výstupem projektu bude prostředek pro léčbu onemocnění synoviálních kloubů, který v porovnání s dosavadními produkty má potenciál principiálně jiným způsobem snižovat mezní tření.; Project utilizes knowledge, skills and equipment of investigators from orthopaedics and traumatology (2LF UK) , and biomechanics and biotribology ( CTU in Prague) to create a new generation of composite means for biotribological treatment. The project is based on previous experience of researchers in the field of friction in synovial joint research, that identified the key role of amphiphilic structures in boundary lubrication. Interdisciplinary team created in the framework of the proposed project will conduct comprehensive development of medical devices based on preparation of new amphiphilic products, testing and verification of their biotribological properties in short-term and long-term experiments with considerationing the form of clinical application. The project outcome will be a mean for treating diseases of the synovial joints that has potential to reduce boundary friction in synovial joints and periarticular structures in fundamentally different way.
- MeSH
- 3D tisk MeSH
- biokompatibilní materiály MeSH
- biomechanika MeSH
- biotechnologie MeSH
- fosfolipidy MeSH
- hydrofobní a hydrofilní interakce MeSH
- kloubní pouzdro patologie MeSH
- kyselina hyaluronová MeSH
- lubrikace MeSH
- nemoci kloubů terapie MeSH
- testování materiálů MeSH
- tření MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- biomedicínské inženýrství
- ortopedie
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR
Small hydrophobic gold nanoparticles with diameter lower than the membrane thickness can form clusters or uniformly distribute within the hydrophobic core of the bilayer. The coexistence of two stable phases (clustered and dispersed) indicates the energy barrier between nanoparticles. We calculated the distance dependence of the membrane-mediated interaction between two adjacent nanoparticles. In our model we consider two deformation modes: the monolayer bending and the hydroxycarbon chain stretching. Existence of an energy barrier between the clustered and the separated state of nanoparticles was predicted. Variation analysis of the membrane mechanical parameters revealed that the energy barrier between two membrane embedded nanoparticles is mainly the consequence of the bending deformation and not change of the thickness of the bilayer in the vicinity of nanoparticles. It is shown, that the forces between the nanoparticles embedded in the biological membrane could be either attractive or repulsive, depending on the mutual distance between them.
[Purpose] Low back pain is a pervasive problem in modern societies. Physical rehabilitation in treatment of low back pain should reduce pain, muscle tension and restore spine stability and balance. The INFINITY® rehabilitation method that is based on a figure of eight movement pattern was proved to be effective in low back pain treatment. The aim of the paper is to estimate the effect of a figure of eight motion on the L5/S1 load and lumbar spine muscle activation in comparison to other motion patterns. [Subjects and Methods] Three-dimensional model of lumbar spine musculoskeletal system is used to simulate effect of various load motion pattern induced by displacement of the center of gravity of the upper body. Four motion patterns were examined: lateral and oblique pendulum-like motion, elliptical motion and figure of eight motion. [Results] The simple pendulum-like and elliptical-like patterns induce harmonic muscle activation and harmonic spinal load. The figure of eight motion pattern creates high-frequency spinal loading that activates remodeling of bones and tendons. The figure of eight pattern also requires muscle activity that differs from harmonic frequency and is more demanding on muscle control and could also improve muscle coordination. [Conclusion] The results of the study indicate that complex motion pattern during INFINITY® rehabilitation might enhance the spine stability by influencing its passive, active and neural components.
- Klíčová slova
- INFINITY method®,
- MeSH
- biomechanika MeSH
- lidé MeSH
- lumbalgie * rehabilitace MeSH
- muskuloskeletální manipulace metody MeSH
- teoretické modely MeSH
- terapie cvičením * metody MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Klíčová slova
- gluteus medius,
- MeSH
- biomechanika MeSH
- hýždě fyziologie MeSH
- kosterní svaly * fyziologie MeSH
- lidé MeSH
- svalová síla fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
BACKGROUND: The primary objective of Tissue engineering is a regeneration or replacement of tissues or organs damaged by disease, injury, or congenital anomalies. At present, Tissue engineering repairs damaged tissues and organs with artificial supporting structures called scaffolds. These are used for attachment and subsequent growth of appropriate cells. During the cell growth gradual biodegradation of the scaffold occurs and the final product is a new tissue with the desired shape and properties. In recent years, research workplaces are focused on developing scaffold by bio-fabrication techniques to achieve fast, precise and cheap automatic manufacturing of these structures. Most promising techniques seem to be Rapid prototyping due to its high level of precision and controlling. However, this technique is still to solve various issues before it is easily used for scaffold fabrication. In this article we tested printing of clinically applicable scaffolds with use of commercially available devices and materials. Research presented in this article is in general focused on "scaffolding" on a field of bone tissue replacement. RESULTS: Commercially available 3D printer and Polylactic acid were used to create originally designed and possibly suitable scaffold structures for bone tissue engineering. We tested printing of scaffolds with different geometrical structures. Based on the osteosarcoma cells proliferation experiment and mechanical testing of designed scaffold samples, it will be stated that it is likely not necessary to keep the recommended porosity of the scaffold for bone tissue replacement at about 90%, and it will also be clarified why this fact eliminates mechanical properties issue. Moreover, it is demonstrated that the size of an individual pore could be double the size of the recommended range between 0.2-0.35 mm without affecting the cell proliferation. CONCLUSION: Rapid prototyping technique based on Fused deposition modelling was used for the fabrication of designed scaffold structures. All the experiments were performed in order to show how to possibly solve certain limitations and issues that are currently reported by research workplaces on the field of scaffold bio-fabrication. These results should provide new valuable knowledge for further research.
- Publikační typ
- časopisecké články MeSH