The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.
- Publication type
- Journal Article MeSH
- Review MeSH
In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.
- MeSH
- Genetic Variation * MeSH
- Genetic Loci MeSH
- Humans MeSH
- Promoter Regions, Genetic genetics MeSH
- DNA, Ribosomal genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The main problem precluding successful therapy with conventional taxanes is de novo or acquired resistance to taxanes. Therefore, novel experimental taxane derivatives (Stony Brook taxanes; SB-Ts) are synthesized and tested as potential drugs against resistant solid tumors. Recently, we reported alterations in ABCC3, CPS1, and TRIP6 gene expression in a breast cancer cell line resistant to paclitaxel. The present study aimed to investigate gene expression changes of these three candidate molecules in the highly resistant ovarian carcinoma cells in vitro and corresponding in vivo models treated with paclitaxel and new experimental Stony Brook taxanes of the third generation (SB-T-121605 and SB-T-121606). We also addressed their prognostic meaning in ovarian carcinoma patients treated with taxanes. We estimated and observed changes in mRNA and protein profiles of ABCC3, CPS1, and TRIP6 in resistant and sensitive ovarian cancer cells and after the treatment of resistant ovarian cancer models with paclitaxel and Stony Brook taxanes in vitro and in vivo. Combining Stony Brook taxanes with paclitaxel caused downregulation of CPS1 in the paclitaxel-resistant mouse xenograft tumor model in vivo. Moreover, CPS1 overexpression seems to play a role of a prognostic biomarker of epithelial ovarian carcinoma patients' poor survival. ABCC3 was overexpressed in EOC tumors, but after the treatment with taxanes, its up-regulation disappeared. Based on our results, we can suggest ABCC3 and CPS1 for further investigations as potential therapeutic targets in human cancers.
- MeSH
- Adaptor Proteins, Signal Transducing genetics MeSH
- Drug Resistance, Neoplasm genetics MeSH
- Down-Regulation drug effects genetics MeSH
- Carcinoma, Ovarian Epithelial drug therapy genetics MeSH
- Carbamoyl-Phosphate Synthase (Ammonia) genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Mice, Nude MeSH
- Mice MeSH
- Biomarkers, Tumor genetics MeSH
- Cell Line, Tumor MeSH
- Ovarian Neoplasms drug therapy genetics MeSH
- Paclitaxel therapeutic use MeSH
- LIM Domain Proteins genetics MeSH
- Multidrug Resistance-Associated Proteins genetics MeSH
- Taxoids therapeutic use MeSH
- Transcription Factors genetics MeSH
- Cell Survival drug effects genetics MeSH
- Animals MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
- MeSH
- Interleukin-6 immunology metabolism MeSH
- Humans MeSH
- Tumor Microenvironment * MeSH
- Head and Neck Neoplasms immunology therapy MeSH
- Signal Transduction MeSH
- Inflammation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, highpenetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
- Publication type
- Journal Article MeSH
- Review MeSH
Primary aldosteronism (PA) is the most frequent form of endocrine hypertension. Recently, frequent clinically significant adrenal insufficiency after adrenalectomy in subjects with PA has been reported, which may make the early postsurgical management difficult. We retrospectively searched for possible adrenal insufficiency in subjects who underwent adrenalectomy for PA and have measured cortisol in the early postoperative course. We included subjects with confirmed diagnosis of PA who underwent either posture testing (blood draw at 06:00 and 08:00) and/or adrenal venous sampling (AVS) (blood draw between 08:00 and 09:00) and have also measured cortisol after surgery (cortisol measured approximately at 07:00). Cortisol was measured by immunoassay. In this study, we identified 150 subjects (age 48.5 ± 10.3 years) with available cortisol values in the early postoperative course (median [25th percentile, 75th percentile]) 6 [5,6] days. Postoperative cortisol values (551 ± 148 nmol/l) were normal and significantly higher, compared to preoperative standing cortisol values (404 ± 150 nmol/l; (P < 0.001) and AVS cortisol values (493 ± 198 nmol/l; P = 0.009), and did not significantly differ from preoperative supine cortisol values. Postsurgical cortisol values were not different among subjects with or without abnormal dexamethasone suppression test or elevated urinary free cortisol pre-surgery, and were significantly higher in subjects with abnormal diurnal cortisol variability compared with subjects with normal diurnal variability. No patient presented with adrenocortical crisis in the later follow-up. In conclusion, postoperative cortisol values did not indicate any suspicion of possible adrenal insufficiency. To exclude possible adrenal insufficiency, it may be sufficient to measure morning cortisol in the early postoperative course.
- MeSH
- Adrenalectomy MeSH
- Adrenal Insufficiency * diagnosis etiology surgery MeSH
- Adult MeSH
- Hydrocortisone MeSH
- Hyperaldosteronism * complications diagnosis surgery MeSH
- Middle Aged MeSH
- Humans MeSH
- Retrospective Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Ovarian cancer is one of the most common causes of death among gynecological malignancies. Molecular changes occurring in the primary tumor lead to metastatic spread into the peritoneum and the formation of distant metastases. Identification of these changes helps to reveal the nature of metastases development and decipher early biomarkers of prognosis and disease progression. Comparing differences in gene expression profiles between primary tumors and metastases, together with disclosing their epigenetic regulation, provides interesting associations with progression and metastasizing. Regulatory elements from the non-coding RNA families such as microRNAs and long non-coding RNAs seem to participate in these processes and represent potential molecular biomarkers of patient prognosis. Progress in therapy individualization and its proper targeting also rely upon a better understanding of interactions among the above-listed factors. This review aims to summarize currently available findings of microRNAs and long non-coding RNAs linked with tumor progression and metastatic process in ovarian cancer. These biomolecules provide promising tools for monitoring the patient's response to treatment, and further they serve as potential therapeutic targets of this deadly disease.
- Publication type
- Journal Article MeSH
- Review MeSH
- MeSH
- COVID-19 * MeSH
- Humans MeSH
- Melanoma * therapy MeSH
- Skin Neoplasms * therapy MeSH
- SARS-CoV-2 MeSH
- Venereology * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
In human cells, the intergenic spacers (IGS), which separate ribosomal genes, are complex approximately 30 kb-long loci. Recent studies indicate that all, or almost all, parts of IGS may be transcribed, and that at least some of them are involved in the regulation of the ribosomal DNA (rDNA) transcription, maintenance of the nucleolar architecture, and response of the cell nucleus to stress. However, since each cell contains hundreds not quite identical copies of IGS, the structure and functions of this locus remain poorly understood, and the dynamics of its products has not been specially studied. In this work, we used quantitative PCR to measure the expression levels of various rDNA regions at different times after inhibition of the transcription by Actinomycin D applied in high doses. This approach allowed us to measure real or extrapolated half-life times of some IGS loci. Our study reveals characteristic dynamic patterns suggestive of various pathways of RNA utilization and decay.
- MeSH
- HeLa Cells MeSH
- Humans MeSH
- DNA, Ribosomal Spacer chemistry genetics metabolism MeSH
- RNA analysis biosynthesis genetics isolation & purification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
- MeSH
- Exosomes metabolism MeSH
- Cancer-Associated Fibroblasts metabolism MeSH
- Interleukin-6 metabolism MeSH
- Humans MeSH
- Tumor Microenvironment MeSH
- Neoplasms metabolism MeSH
- Paracrine Communication MeSH
- Cell Movement MeSH
- Cell Proliferation MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH