Background: In recent years, significant resistance of microorganisms to antibiotics has been observed. A biofilm is a structure that significantly aids the survival of the microbial population and also significantly affects its resistance. Methods: Thyme and clove essential oils (EOs) were subjected to chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with a flame ionization detector (GC-FID). Furthermore, the antimicrobial effect of these EOs was tested in both the liquid and vapor phases using the volatilization method. The effect of the EOs on growth parameters was monitored using an RTS-8 bioreactor. However, the effect of the EOs on the biofilm formation of commonly occurring bacteria with pathogenic potential was also monitored, but for less described and yet clinically important strains of Arcobacter spp. Results: In total, 37 and 28 compounds were identified in the thyme and clove EO samples, respectively. The most common were terpenes and also derivatives of phenolic substances. Both EOs exhibited antimicrobial activity in the liquid and/or vapor phase against at least some strains. The determined antimicrobial activity of thyme and clove oil was in the range of 32-1024 μg/mL in the liquid phase and 512-1024 μg/mL in the vapor phase, respectively. The results of the antimicrobial effect are also supported by similar conclusions from monitoring growth curves using the RTS bioreactor. The effect of EOs on biofilm formation differed between strains. Biofilm formation of Pseudomonas aeruginosa was completely suppressed in an environment with a thyme EO concentration of 1024 μg/mL. On the other hand, increased biofilm formation was found, e.g., in an environment of low concentration (1-32 μg/mL). Conclusions: The potential of using natural matrices as antimicrobials or preservatives is evident. The effect of these EOs on biofilm formation, especially Arcobacter strains, is described for the first time.
- Publication type
- Journal Article MeSH
Diethyl phthalate (DEP) is one of the extensively used plasticizers which has been considered a priority hazardous pollutant due to its carcinogenic, endocrine disrupter, and multi-toxic effects on humans. The identification of DEP in different parts of the ecosphere has increased the global community's attention to the elimination of this pollutant in a bio-eco-friendly way. In this research, a novel aerobic bacterial strain nominates as ShA (GenBank accession number: MN298858) capable of consuming DEP as carbon and energy sources, was isolated from the upper phase (0-10 cm) of Anzali international wetland sediments by enrichment culture method. Morphological characteristics and 16S rRNA gene sequence analysis demonstrated that strain ShA belonged to Pseudomonas putida. The substrate utilization test demonstrated that strain ShA was able to grow in mineral salt medium containing dimethyl phthalate (DMP) and phthalic acid (PA) isomers including terephthalic and isophthalic acid. Degradation assay showed strain ShA completely degraded 200 mg/L DEP within 22 h (pH 7.0, 30 °C). Surprisingly, PA as the main intermediate of DEP biodegradation was identified by GC-FID. Moreover, the rapid degradation of 2000 mg/L PA to CO2 and H2O was viewed in 22 h by strain ShA. The possible route of DEP degradation was DEP directly to PA and then PA consumption for growth. This study obtained results that provide a great contribution to applying strain ShA in the biodegradation of low molecular weight of PAEs and PA isomers in natural ecosystems. This is the first report of a P. putida strain able to degrade DEP and PA.
- MeSH
- Biodegradation, Environmental MeSH
- Ecosystem MeSH
- Environmental Pollutants * MeSH
- Humans MeSH
- Pseudomonas putida * genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The study aimed to assess the antifungal activity of twenty-five essential oils (EOs) and the potential synergistic activity of the most effective EOs against significant indoor fungi of the genus Aspergillus [A. fumigatus (KBio-122), A. flavus (KBio-134), A. terreus (KBio-145) and A. niger (KBio-202)]. The chemical composition of all EOs was evaluated by the gas chromatography coupled with mass spectrometry (GC/MS) and gas chromatography with flame ionization detector (GC-FID) analysis. The antifungal susceptibility of EOs was evaluated by using the broth microdilution method. The most effective EOs were selected to determine the minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) at a concentration range from 256 to 0.125 μg/mL. For the synergistic activities, the most effective EOs were tested using the chessboard pattern. The most sensitive strain to treatments with essential oils alone and in the combination of EOs was A. flavus (KBio-134). The chessboard assay showed that combinations of lemongrass and thyme EOs proved the most potent synergistic antifungal activity (FICI = 0.1875) against A. fumigatus (KBio-122). The synergy displayed by a combination of some EOs may be used to control fungal growth or increasing resistance to available synthetic antifungals, consequently permitting the reduction of their most active doses.
Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.
- MeSH
- Anti-Infective Agents pharmacology MeSH
- Arcobacter drug effects MeSH
- A549 Cells MeSH
- Candida albicans drug effects MeSH
- Distillation MeSH
- Lavandula chemistry MeSH
- Humans MeSH
- Lung Neoplasms drug therapy MeSH
- Oils, Volatile pharmacology MeSH
- Plant Oils pharmacology MeSH
- Cell Proliferation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
In current study is done antioxidant, anticholinesterase, and carbonic anhydrase isoenzymes I and II inhibition assays, screening of biological active compounds and electronic microscopy analysis of secretory canals of fruits, flowers, roots, and aerial parts extracts and essential oils of Angelica purpurascens. Phenolic constituents, antioxidant, and anti-lipid peroxidation potentials of variants were estimated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and thiobarbituric acid (TBA) processes. Cholinesterase inhibition effect was detected through Ellman's method. The GC/ Mass Spectrometry (MS) and gas chromatography (GC)-flame Ionization Detector (FID) was used for essential oils analysis. NMR techniques was used for identification of the isolated compounds. The fruit hexane and dichloromethane fractions exhibited a greater antioxidant capacity and total phenolic content. The dichloromethane fraction of fruit demonstrated the most higher acetylcholinesterase inhibition (39.86 ± 2.63%), while the fruit hexane fraction displayed the best inhibition towards butyrylcholinesterase (84.02 ± 1.28%). Cytosolic isoenzymes of human carbonic anhydrase (hCA) I, and II isoenzymes were influentially suppressed by flower and fruit dichloromethane fractions with 1.650 and 2.020 µM IC50 values, respectively. The electronic microscopy analysis of secretory canals found that the small number of secretory canals were at leaf while the largest shape of secretory canals was at the fruit. The secretory canals of roots, aerial parts, and fruits include more monoterpene hydrocarbons, while the canals, existing in the flowers are qualified by a higher presence of sesquiterpenes β-caryophyllene (12.1%), germacrene D (4.5%) and ether octyl acetate (11.9%). The highest level of monoterpene β-phellandrene (47.6%) and limonene (8.2%) were found in the fruit essential oil. The next isolated compounds from fruits of A. purpurascens like stigmasterol, β-sitosterol, bergapten, and oxypeucedanin have shown high anticholinesterase and antioxidant activities.
- Publication type
- Journal Article MeSH
INTRODUCTION: Cannabinoids are organic compounds, natural or synthetic, that bind to the cannabinoid receptors and have similar pharmacological properties as produced by the cannabis plant, Cannabis sativa. Gas chromatography (GC), e.g. gas chromatography mass spectrometry (GC-MS), is a popular analytical tool that has been used extensively to analyse cannabinoids in various matrices. OBJECTIVE: To review published literature on the use of various GC-based analytical methods for the analysis of naturally occurring cannabinoids published during the past decade. METHODOLOGY: A comprehensive literature search was performed utilising several databases, like Web of Knowledge, PubMed and Google Scholar, and other relevant published materials including published books. The keywords used, in various combinations, with cannabinoids being present in all combinations, in the search were cannabinoids, Cannabis sativa, marijuana, analysis, GC, quantitative, qualitative and quality control. RESULTS: During the past decade, several GC-based methods for the analysis of cannabinoids have been reported. While simple one-dimensional (1D) GC-MS and GC-FID (flame ionisation detector) methods were found to be quite common in cannabinoids analysis, two-dimensional (2D) GC-MS as well as GC-MS/MS also were popular because of their ability to provide more useful data for identification and quantification of cannabinoids in various matrices. Some degree of automation in sample preparation, and applications of mathematical and computational models for optimisation of different protocols were observed, and pre-analyses included various derivatisation techniques, and environmentally friendly extraction protocols. CONCLUSIONS: GC-based analysis of naturally occurring cannabinoids, especially using GC-MS, has dominated the cannabinoids analysis in the last decade; new derivatisation methods, new ionisation methods, and mathematical models for method optimisation have been introduced.
- MeSH
- Cannabis * MeSH
- Cannabinoids * MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Tandem Mass Spectrometry MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Essential oils obtained via the hydrodistillation of two Asian herbs (Houttuynia cordata and Persicaria odorata) were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Additionally, both the liquid and vapor phase of essential oil were tested on antimicrobial activity using the broth microdilution volatilization method. Antimicrobial activity was tested on Gram-negative and Gram-positive bacteria-Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Streptococcus pyogenes, Klebsiella pneumoniae, Seratia marcescense and Bacillus subtilis. Hydrodistillation produced a yield of 0.34% (Houttuynia cordata) and 0.40% (Persicaria odorata). 41 compounds were identified in both essential oils. Essential oils contained monoterpenes and their oxidized forms, sesquiterpenes and their oxidized forms, oxidized diterpenes, derivates of phenylpropene and other groups, such as, for example, aldehydes, alcohols or fatty acids. Both essential oils were antimicrobial active in both vapor and liquid phases at least in case of one bacterium. They expressed various antimicrobial activity in the range of 128-1024 μg∙mL-1, 512-1024 μg∙mL-1 in broth and 1024 μg∙mL-1, 512-1024 μg∙mL-1 in agar, respectively. Research showed new interesting information about P. odorata and H. cordata essential oils and demonstrated that both essential oils could be possibly used in the field of natural medicine or natural food preservation.
- MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Bacterial Infections drug therapy microbiology MeSH
- Liquid-Liquid Extraction MeSH
- Gram-Positive Bacteria drug effects MeSH
- Houttuynia chemistry MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Oils, Volatile chemistry pharmacology MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Polygonaceae chemistry MeSH
- Plant Extracts chemistry pharmacology MeSH
- Staphylococcus aureus drug effects pathogenicity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The purpose of this study was to compare the yield, chemical composition, antimicrobial and antioxidant properties of essential oils isolated from leaves of Laurus nobilis L. by two different distillation methods. The essential oils isolated by hydrodistillation (HD) and steam distillation (SD) were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Hydrodistillation produced a yield of 0.95 ± 0.06% which is slightly higher than yield obtained by steam distillation 0.79 ± 0.07%. Seventy three compounds in the bay leaves oil obtained by steam distillation were identified while in essential oil obtained by hydrodistillation were identified only 54 compounds. The antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method. Antimicrobial activity of obtained essential oils was evaluated by disc diffusion method in comparison with several chosen antimicrobials. The antimicrobial activity was tested on five microorganisms - Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans. In general, oils produced by steam distillation had higher antimicrobial and antioxidant activities than hydrodistillation extracts. It seems that hydrodistillation is better for higher yield while steam distillation is better to use for more quality oils with stronger biological properties.
- MeSH
- Distillation MeSH
- Oils, Volatile * pharmacology MeSH
- Steam MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Laurus * MeSH
- Publication type
- Journal Article MeSH
ETHNOPHARMACOLOGICAL RELEVANCE: Acmella oleracea (L.) R.K. Jansen (Compositae), well-known as jambú, is a medicinal herb of pungent taste, native to Brazil but cultivated in different parts of the world due to its aromatic and pharmacological properties. In folk medicine, the plant has been used against parasites and to combat insects and mites. No data are available on the insecticidal activity of jambú essential oil. AIM OF THE STUDY: To test the jambú essential oil obtained from A. oleracea cultivated in central Italy against the filariasis vector, Culex quinquefasciatus, the Egyptian cotton worm, Spodoptera littoralis, and the housefly, Musca domestica. MATERIALS AND METHODS: The chemical composition of the essential oil was achieved by GC-FID and GC-MS analyses. Acute toxicity experiments were conducted on larvae of the filariasis vector C. quinquefasciatus and S. littoralis and adults of M. domestica to determine the LC50(LD50) and LC90(LD90) values of the oil, along with the positive control, α-cypermethrin. RESULTS: (E)-caryophyllene (20.8%), β-pinene (17.3%), myrcene (17.1%) and caryophyllene oxide (10.0%) were the major volatile constituents. Interestingly, the oil contained little amounts (3.9%) of the insecticidal spilanthol. Jambú essential oil exerted relevant effects on C. quinquefasciatus (LC50 = 42.2 mg L-1, LC90 = 73.6 mg L-1) and S. littoralis 3rd instar larvae (LD50 = 68.1 µg larva-1, LD90 = 132.1 µg larva-1). High acute toxicity was also detected testing the jambú oil against adult females of M. domestica, achieving a LD50 value of 44.3 µg adult-1 and a LD90 value of 87.5 µg adult-1. CONCLUSIONS: Taken together our data support the traditional use of jambú as an insecticidal agent and represent the scientific basis for the industrial exploitation of the essential oil in the fabrication of green insecticides.
- MeSH
- Asteraceae * MeSH
- Culex drug effects MeSH
- Filariasis MeSH
- Insecticides pharmacology MeSH
- Mosquito Vectors drug effects MeSH
- Larva drug effects MeSH
- Lethal Dose 50 MeSH
- Houseflies drug effects MeSH
- Moths drug effects MeSH
- Oils, Volatile pharmacology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Italy MeSH
Thymus bovei Benth. (TB) is an important plant in the traditional medicine of the Mediterranean region. This study investigates the health-promoting properties of TB essential oil (TB-EO) for its possible use in clinical practice with regards to its cytotoxic, anti-herpes simplex virus type 2 (HSV-2), and antihypertensive (through inhibition of human angiotensin-converting enzyme; ACE) properties. The phytochemical profile of EO (99.9%) was analyzed by Gas Chromatography with Flame-Ionization Detection (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS). In this study, all biological methods were performed at the level of in vitro studies. The results showed that TB-EO exerted remarked cytotoxic properties against human cervical carcinoma cells, colon cancer cells, and lung adenocarcinoma cells with the half-maximal inhibitory concentration (IC50) values of 7.22, 9.30, and 8.62 µg/mL, respectively, in comparison with that of standard anticancer drug cisplatin with IC50 values of 4.24, 5.21, and 5.43 µg/mL, respectively. Fascinatingly, TB-EO showed very weak cytotoxicity on the healthy human fetal lung fibroblast cells with an IC50 value of 118.34 µg/mL compared with that of cisplatin (IC50 = 10.08 µg/mL). TB-EO, its main component geraniol, TB-EO combined with acyclovir (ACV) along with standard ACV, have displayed pronounced inhibitory properties against the replication of HSV-2 with the half-maximal effective concentration (EC50) values of 2.13, 1.92, 0.81 and 1.94 µg/mL, respectively, with corresponding selectivity indices (SI) 98.59, 109.38, 259.26 and 108.25, respectively. TB-EO and geraniol at a concentration of 15 µg/mL showed prominent inhibitory activities against ACE with % of inhibition 95.4% and 92.2%, respectively, compared with that of standard inhibitor captopril (99.8%; 15 µg/mL). Molecular docking studies were performed to unveil the mechanism of action of geraniol as well as structural parameters necessary for anti-HSV-2 activity (through the inhibition of HSV-2 protease) and ACE inhibition. This is the first report on the chemical composition of Egyptian TB-EO along with the above-mentioned biological activities. Our results may be considered as novel findings in the course of a search for new and active anticancer, anti-HSV-2 and antihypertensive agents, and expand the medicinal value of this plant and its phytochemicals in clinical practice.
- Publication type
- Journal Article MeSH