Cytoplasmic male sterility (CMS) is a widespread phenomenon in flowering plants caused by mitochondrial (mt) genes. CMS genes typically encode novel proteins that interfere with mt functions and can be silenced by nuclear fertility-restorer genes. Although the molecular basis of CMS is well established in a number of crop systems, our understanding of it in natural populations is far more limited. To identify CMS genes in a gynodioecious plant, Silene vulgaris, we constructed mt transcriptomes and compared transcript levels and RNA editing patterns in floral bud tissue from female and hermaphrodite full siblings. The transcriptomes from female and hermaphrodite individuals were very similar overall with respect to variation in levels of transcript abundance across the genome, the extent of RNA editing, and the order in which RNA editing and intron splicing events occurred. We found only a single genomic region that was highly overexpressed and differentially edited in females relative to hermaphrodites. This region is not located near any other transcribed elements and lacks an open-reading frame (ORF) of even moderate size. To our knowledge, this transcript would represent the first non-coding mt RNA associated with CMS in plants and is, therefore, an important target for future functional validation studies.
- MeSH
- RNA Editing MeSH
- Flowers genetics growth & development MeSH
- Genes, Mitochondrial * MeSH
- RNA, Untranslated * MeSH
- Plant Infertility * MeSH
- Plant Proteins genetics metabolism MeSH
- Silene genetics physiology MeSH
- Transcriptome * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Although colorectal cancer (CRC) is the third most frequent cause of cancer related death in Europe, clinically relevant biomarkers for therapy guidance and prognosis are insufficiently reliable. Long non-coding RNAs (lncRNAs) are RNAs over 200 nucleotides long that are not translated into proteins but can influence biological processes. There is emerging evidence for their involvement in solid cancer as oncogenes, tumour suppressors or regulators of cell proliferation and metastasis development. The goal of this study was to evaluate the prognostic effect of selected lncRNAs in a retrospective study on CRC patients from the Czech Republic. We used a quantitative PCR approach to measure the expression in paired non-malignant and tumour tissue samples of CRC patients of nine lncRNAs previously shown to be involved in cancer progression-ANRIL, CCAT1, GAS5, linc-ROR, MALAT1, MIR155HG, PCAT1, SPRY4-IT1 and TUG1. Associations between expression and expression ratios and clinical characteristics and survival were assessed by using univariable Cox proportional hazards models, Kaplan-Meier estimations with the Gehan-Wilcoxon test, the Mann-Whitney U test, the Kruskal-Wallis test and Spearman's correlations. A comparison of expression in tumour tissue (TT) and non-malignant mucosa tissue (MT) showed significant upregulation of CCAT1 and linc-ROR in TT (p < 0.001 and p = 0.001, respectively) and downregulation of ANRIL, MIR155HG and MALAT1 (p = 0.001, p = 0.010, p = 0.001, respectively). Linc-ROR was significantly associated with the presence of synchronous metastases (p = 0.033). For individual tissue types, lower MIR155HG expression in TT was correlated with both shorter overall survival (p = 0.008) and shorter disease-free survival (p = 0.040). In MT, expression ratios of CCAT1/ANRIL and CCAT1/MIR155HG were associated with overall survival (p = 0.005 and p = 0.006, respectively). Our results revealed that changes in expression of lncRNAs between MT and TT hold potential to be used as prognostic biomarkers in CRC patients. Moreover, the ratios of CCAT1 to ANRIL and MIR155HG in MT also exhibit potential for prognosis assessment without tumour sampling. Our results also indicate that cancer progression is associated with detrimental system-wide changes in patient tissue, which might govern patient survival even after successful elimination of tumour or cancerous cells.
- MeSH
- Adult MeSH
- Kaplan-Meier Estimate MeSH
- Colorectal Neoplasms diagnosis epidemiology genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor genetics MeSH
- Prognosis MeSH
- Proportional Hazards Models MeSH
- Gene Expression Regulation, Neoplastic * MeSH
- Retrospective Studies MeSH
- RNA, Long Noncoding genetics MeSH
- Aged MeSH
- Up-Regulation MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
BACKGROUND: Although posttranscriptional modification of mitochondrial (mt) transcripts plays key roles in completion of the coding information and in the expression of mtDNA-encoded genes, there is little experimental evidence on the polyadenylation status and the location of mt gene poly(A) sites for non-human mammals. RESULTS: Poly(A)-enriched RNA-Seq reads collected for two wild-caught bank voles (Clethrionomys glareolus) were mapped to the complete mitochondrial genome of that species. Transcript polyadenylation was detected as unmapped adenine residues at the ends of the mapped reads. Where the tRNA punctuation model applied, there was the expected polyadenylation, except for the nad5 transcript, whose polyadenylated 3' end is at an intergenic sequence/cytochrome b boundary. As in human, two pairs of bank vole genes, nad4l/nad4 and atp8/atp6, are expressed from bicistronic transcripts. TAA stop codons of four bank vole protein-coding genes (nad1, atp6, cox3 and nad4) are incompletely encoded in the DNA and are completed by polyadenylation. This is three genes (nad2, nad3 and cob) less than in human. The bank vole nad2 gene encodes a full stop codon (TAA in one vole and TAG in the other), which is followed by a 2 bp UTR and the gene conforms to the tRNA punctuation model. In contrast, the annotations of the reference mouse and some other rodent mt genomes in GenBank include complete TAG stop codons in both nad1 and nad2, which overlap downstream trnI and trnW, respectively. Thus the RNA-Seq data of bank voles provides a model for stop codons of mt-encoded genes in mammals comparable to humans, but at odds with some of the interpretation based purely on genomic data in mouse and other rodents. CONCLUSIONS: This work demonstrates how RNA-Seq data were useful to recover mtDNA transcriptome data in a non-model rodent and to shed more light on mammalian mtDNA transcriptome and post-transcriptional modification. Even though gene content and organisation of mtDNA are strongly conserved among mammals, annotations that neglect the transcriptome may be prone to errors in relation to the stop codons.
Mitochondrial (mt) DNA has been useful in revealing the phylogenetic relationship of eukaryotic organisms including flatworms. Therefore, the use of mitogenomic data for the comparative and phylogenetic purposes is needed for those families of digenetic trematodes for which the mitogenomic data are still missing. Molecular data with sufficiently rich informative characters that can better resolve species identification, discrimination, and membership in different genera is also required for members of some morphologically difficult families of trematodes bearing few autapomorphic characters among its members. Here, the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) and the complete mt genome of the trematode Uvitellina sp. (Cyclocoelidae: Haematotrephinae) was determined and annotated. The mt genome of this avian trematode is 14,217 bp in length, containing 36 genes plus a single non-coding region. The ITS rDNA sequences were used for the pairwise sequence comparison of Uvitellina sp. with European cyclocoelid species, and the mitochondrial 12 protein-coding genes (PCGs) and two ribosomal RNA genes were used to evaluate the position of the family within selected trematodes. The ITS rDNA analysis of Uvitellina sp. showed less nucleotide differences with Hyptiasmus oculeus (16.77%) than with other European cyclocoelids (18.63-23.58%). The Bayesian inference (BI) analysis using the 12 mt PCGs and two rRNA genes supported the placement of the family Cyclocoelidae within the superfamily Echinostomatoidea (Plagiorchiida: Echinostmata). The availability of the mt genome sequences of Uvitellina sp. provides a novel resource of molecular markers for phylogenetic studies of Cyclocoelidae and other trematodes.
- MeSH
- Bayes Theorem MeSH
- Echinostomatidae classification genetics MeSH
- Phylogeny MeSH
- Genome, Mitochondrial genetics MeSH
- DNA, Ribosomal Spacer genetics MeSH
- DNA, Mitochondrial genetics MeSH
- Mitochondria genetics MeSH
- Birds parasitology MeSH
- DNA, Ribosomal genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. CONCLUSIONS/SIGNIFICANCE: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.
- MeSH
- A549 Cells MeSH
- DEAD Box Protein 58 metabolism MeSH
- Disease Outbreaks MeSH
- Phylogeny MeSH
- Genome, Viral * MeSH
- Zika Virus Infection virology MeSH
- Host-Pathogen Interactions MeSH
- Interferon Type I antagonists & inhibitors biosynthesis genetics MeSH
- Humans MeSH
- Virus Replication MeSH
- RNA, Viral genetics isolation & purification MeSH
- Vero Cells MeSH
- Zika Virus genetics isolation & purification pathogenicity physiology MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Brazil epidemiology MeSH
BACKGROUND: Representatives of the trematode family Fasciolidae are responsible for major socio-economic losses worldwide. Fascioloides magna is an important pathogenic liver fluke of wild and domestic ungulates. To date, only a limited number of studies concerning the molecular biology of F. magna exist. Therefore, the objective of the present study was to determine the complete mitochondrial (mt) genome sequence of F. magna, and assess the phylogenetic relationships of this fluke with other trematodes based on the mtDNA dataset. FINDINGS: The complete F. magna mt genome sequence is 14,047 bp. The gene content and arrangement of the F. magna mt genome is similar to those of Fasciola spp., except that trnE is located between trnG and the only non-coding region in F. magna mt genome. Phylogenetic relationships of F. magna with selected trematodes using Bayesian inference (BI) was reconstructed based on the concatenated amino acid sequences for 12 protein-coding genes, which confirmed that the genus Fascioloides is closely related to the genus Fasciola; the intergeneric differences of amino acid composition between the genera Fascioloides and Fasciola ranged 17.97-18.24 %. CONCLUSIONS: The determination of F. magna mt genome sequence provides a valuable resource for further investigations of the phylogeny of the family Fasciolidae and other trematodes, and represents a useful platform for designing appropriate molecular markers.
- MeSH
- Fasciola hepatica chemistry classification genetics isolation & purification MeSH
- Fasciolidae chemistry classification genetics isolation & purification MeSH
- Phylogeny MeSH
- Genome, Mitochondrial * MeSH
- Genome, Helminth * MeSH
- Trematode Infections parasitology MeSH
- Molecular Sequence Data MeSH
- Helminth Proteins chemistry genetics MeSH
- Base Sequence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
- MeSH
- Aegilops genetics metabolism MeSH
- Chromosomes, Plant * genetics MeSH
- Karyotyping MeSH
- Mitosis * genetics MeSH
- Nondisjunction, Genetic MeSH
- Pollen genetics MeSH
- Gene Expression Regulation, Plant MeSH
- Genes, Plant MeSH
- Plant Proteins genetics metabolism MeSH
- Secale * genetics MeSH
- Publication type
- Journal Article MeSH
STUDY QUESTION: Which actively translated maternal transcripts are differentially regulated between clinically relevant in vitro and in vivo maturation (IVM) conditions in mouse oocytes and zygotes? SUMMARY ANSWER: Our findings uncovered significant differences in the global transcriptome as well as alterations in the translation of specific transcripts encoding components of energy production, cell cycle regulation, and protein synthesis in oocytes and RNA metabolism in zygotes. WHAT IS KNOWN ALREADY: Properly regulated translation of stored maternal transcripts is a crucial factor for successful development of oocytes and early embryos, particularly due to the transcriptionally silent phase of meiosis. STUDY DESIGN, SIZE, DURATION: This is a basic science study utilizing an ICR mouse model, best suited for studying in vivo maturation. In the treatment group, fully grown germinal vesicle oocytes from stimulated ovaries were in vitro matured to the metaphase II (MII) stage either as denuded without gonadotropins (IVM DO), or as cumulus-oocyte complexes (IVM COC) in the presence of 0.075 IU/ml recombinant FSH (rFSH) and 0.075 IU/ml recombinant hCG (rhCG). To account for changes in developmental competence, IVM COC from non-stimulated ovaries (IVM COC-) were included. In vivo matured MII oocytes (IVO) from stimulated ovaries were used as a control after ovulation triggering with rhCG. To simulate standard IVM conditions, we supplemented media with amino acids, vitamins, and bovine serum albumin. Accordingly, in vitro pronuclear zygotes (IMZ) were generated by IVF from IVM DO, and were compared to in vivo pronuclear zygotes (IVZ). All experiments were performed in quadruplicates with samples collected for both polyribosome fractionation and total transcriptome analysis. Samples were collected over three consecutive months. PARTICIPANTS/MATERIALS, SETTING, METHODS: All ICR mice were bred under legal permission for animal experimentation (no. MZE-24154/2021-18134) obtained from the Ministry of Agriculture of the Czech Republic. Actively translated (polyribosome occupied) maternal transcripts were detected in in vitro and in vivo matured mouse oocytes and zygotes by density gradient ultracentrifugation, followed by RNA isolation and high-throughput RNA sequencing. Bioinformatic analysis was performed and subsequent data validation was done by western blotting, radioactive isotope, and mitotracker dye labelling. MAIN RESULTS AND THE ROLE OF CHANCE: Gene expression analysis of acquired polysome-derived high-throughput RNA sequencing data revealed significant changes (RPKM ≥ 0.2; P ≤ 0.005) in translation between in vitro and in vivo matured oocytes and respectively produced pronuclear zygotes. Surprisingly, the comparison between IVM DO and IVM COC RNA-seq data of both fractionated and total transcriptome showed very few transcripts with more than a 2-fold difference. Data validation by radioactive isotope labelling revealed a decrease in global translation bof20% in IVM DO and COC samples in comparison to IVO samples. Moreover, IVM conditions compromised oocyte energy metabolism, which was demonstrated by both changes in polysome recruitment of each of 13 mt-protein-coding transcripts as well as by validation using mitotracker red staining. LARGE SCALE DATA: The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE241633 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE241633). LIMITATIONS, REASONS FOR CAUTION: It is extremely complicated to achieve in vivo consistency in animal model systems such as porcine or bovine. To achieve a high reproducibility of in vivo stimulations, the ICR mouse model was selected. However, careful interpretation of our findings with regard to assisted reproductive techniques has to be made by taking into consideration intra-species differences between the mouse model and humans. Also, the sole effect of the cumulus cells' contribution could not be adequately addressed by comparing IVM COC and IVM DO, because the IVM DO were matured without gonadotropin supplementation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings confirmed the inferiority of standard IVM technology compared with the in vivo approach. It also pointed at compromised biological processes employed in the critical translational regulation of in vitro matured MII oocytes and pronuclear zygotes. By highlighting the importance of proper translational regulation during in vitro oocyte maturation, this study should prompt further clinical investigations in the context of translation. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Czech Grant Agency (22-27301S), Charles University Grant Agency (372621), Ministry of Education, Youth and Sports (EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE), and Institutional Research Concept RVO67985904. No competing interest is declared.
- MeSH
- Chorionic Gonadotropin pharmacology MeSH
- Embryonic Development * physiology MeSH
- In Vitro Oocyte Maturation Techniques * MeSH
- Cumulus Cells * metabolism MeSH
- Mice, Inbred ICR * MeSH
- Mice MeSH
- Oocytes * metabolism MeSH
- Protein Biosynthesis MeSH
- Transcriptome MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Zygote metabolism MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH