Q57061902
Dotaz
Zobrazit nápovědu
Throughout development, neuronal progenitors undergo complex transformation into polarized nerve cells, warranting the directional flow of information in the neural grid. The majority of neuronal polarization studies have been carried out on rodent-derived precursor cells, programmed to develop into neurons. Unlike rodent neuronal cells, SH-SY5Y cells derived from human bone marrow present a sub-clone of neuroblastoma line, with their transformation into neuron-like cells showing a range of highly instructive neurobiological characteristics. We applied two-step retinoic acid (RA) and brain-derived neurotrophic factor (BDNF) protocol to monitor the conversion of undifferentiated SH-SY5Y into neuron-like cells with distinctly polarized axon-dendritic morphology and formation of bona fide synaptic connections. We show that BDNF is a key driver and regulator of the expression of axonal marker tau and dendritic microtubule-associated protein-2 (MAP2), with their sorting to distinct cellular compartments. Using selective kinase inhibitors downregulating BDNF-TrkB signaling, we demonstrate that constitutive activation of TrkB receptor is essential for the maintenance of established polarization morphology. Importantly, the proximity ligation assay applied in our preparation demonstrates that differentiating neuron-like cells develop elaborate synaptic connections enriched with hallmark pre- and postsynaptic proteins. Described herein findings highlight several fundamental processes related to neuronal polarization and synaptogenesis in human-derived cells, which are of major relevance to neurobiology and translational neuroscience.
- MeSH
- biologické markery MeSH
- buněčná diferenciace genetika MeSH
- lidé MeSH
- mozkový neurotrofický faktor genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- neuroblastom genetika metabolismus patologie MeSH
- neurogeneze genetika MeSH
- neurony cytologie metabolismus MeSH
- reaktivní formy kyslíku MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The nucleus-encoded 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) regulates cyclophilin D (cypD) in the mitochondrial matrix. CypD regulates opening of mitochondrial permeability transition pores. Both mechanisms may be affected by amyloid β peptides accumulated in mitochondria in Alzheimer's disease (AD). In order to clarify changes occurring in brain mitochondria, we evaluated interactions of both mitochondrial proteins in vitro (by surface plasmon resonance biosensor) and detected levels of various complexes of 17β-HSD10 formed in vivo (by sandwich ELISA) in brain mitochondria isolated from the transgenic animal model of AD (homozygous McGill-R-Thy1-APP rats) and in cerebrospinal fluid samples of AD patients. By surface plasmon resonance biosensor, we observed the interaction of 17β-HSD10 and cypD in a direct real-time manner and determined, for the first time, the kinetic parameters of the interaction (ka 2.0 × 105 M1s-1, kd 5.8 × 104 s-1, and KD 3.5 × 10-10 M). In McGill-R-Thy1-APP rats compared to controls, levels of 17β-HSD10-cypD complexes were decreased and those of total amyloid β increased. Moreover, the levels of 17β-HSD10-cypD complexes were decreased in cerebrospinal fluid of individuals with AD (in mild cognitive impairment as well as dementia stages) or with Frontotemporal lobar degeneration (FTLD) compared to cognitively normal controls (the sensitivity of the complexes to AD dementia was 92.9%, that to FTLD 73.8%, the specificity to AD dementia equaled 91.7% in a comparison with the controls but only 26.2% with FTLD). Our results demonstrate the weakened ability of 17β-HSD10 to regulate cypD in the mitochondrial matrix probably via direct effects of amyloid β. Levels of 17β-HSD10-cypD complexes in cerebrospinal fluid seem to be the very sensitive indicator of mitochondrial dysfunction observed in neurodegeneration but unfortunately not specific to AD pathology. We do not recommend it as the new biomarker of AD.
- MeSH
- 17-hydroxysteroidní dehydrogenasy mozkomíšní mok metabolismus MeSH
- Alzheimerova nemoc metabolismus MeSH
- amyloidový prekurzorový protein beta genetika MeSH
- kinetika MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- mozek metabolismus MeSH
- peptidylprolylisomerasa F metabolismus MeSH
- potkani transgenní MeSH
- potkani Wistar MeSH
- povrchová plasmonová rezonance MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In Alzheimer's disease (AD), tau pathology manifested by the accumulation of intraneuronal tangles and soluble toxic oligomers emerges as a promising therapeutic target. Multiple anti-tau antibodies inhibiting the formation and propagation of cytotoxic tau or promoting its clearance and degradation have been tested in clinical trials, albeit with the inconclusive outcome. Antibodies against tau protein have been documented both in the brain circulatory system and at the periphery, but their origin and role under normal conditions and in AD remain unclear. While it is tempting to assign them a protective role in regulating tau level and removal of toxic variants, the supportive evidence remains sporadic, requiring systematic analysis and critical evaluation. Herein, we review recent data showing the occurrence of tau-reactive antibodies in the brain and peripheral circulation and discuss their origin and significance in tau clearance. Based on the emerging evidence, we cautiously propose that impairments of tau clearance at the periphery by humoral immunity might aggravate the tau pathology in the central nervous system, with implication for the neurodegenerative process of AD.
- MeSH
- Alzheimerova nemoc etiologie metabolismus patologie terapie MeSH
- autoantigeny imunologie MeSH
- autoprotilátky krev imunologie MeSH
- imunoterapie MeSH
- intravenózní imunoglobuliny terapeutické užití MeSH
- lidé MeSH
- náchylnost k nemoci * MeSH
- proteiny tau imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
x
x