Gaussian and exponentially modified Gaussian functions were incorporated into integrating algorithms used by an open-source, cross-platform tool called CycloBranch. The quantitation is demonstrated on bacterial pyoverdines separated by fine isotope features. Using our algorithm, we can separate the m/z values 694.25802 and 694.26731 (a 0.009 Da difference), where the former belongs to the most intense peak of pyoverdine D (PvdD), and the latter to the second most intense peak of pyoverdine E (PvdE) in the respective isotopic clusters of [M + Fe-H]2+ ions. The areas under chromatographic curves of standards were analyzed for the limit of detection (LOD), limit of quantitation (LOQ), and regression coefficient calculations. The quantitative module returned a LOD and LOQ of 1.4 and 4.3 ng/mL, respectively, for both PvdD and PvdE in human urine. If present and detected in mass spectra, the intensities of user-defined [M + H]+, [M + Na]+, [M + K]+, [M + Fe-H]2+, or other ion types, can be accumulated and used for quantitation. The quantitation result is returned by CycloBranch in seconds or minutes, contrary to an hours-long manual approach, prone to user-born errors originating from necessary copying among various software environments. Native Bruker, Waters, Thermo, txt, mgf, mzML, and mzXML data formats are supported in CycloBranch, which is freely available at https://ms.biomed.cas.cz/cyclobranch.
- MeSH
- Algorithms * MeSH
- Chromatography, Liquid methods MeSH
- Mass Spectrometry methods MeSH
- Isotopes MeSH
- Humans MeSH
- Software * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
False-positive assay readouts caused by badly behaving compounds-frequent hitters, pan-assay interference compounds (PAINS), aggregators, and others-continue to pose a major challenge to experimental screening. There are only a few in silico methods that allow the prediction of such problematic compounds. We report the development of Hit Dexter, two extremely randomized trees classifiers for the prediction of compounds likely to trigger positive assay readouts either by true promiscuity or by assay interference. The models were trained on a well-prepared dataset extracted from the PubChem Bioassay database, consisting of approximately 311 000 compounds tested for activity on at least 50 proteins. Hit Dexter reached MCC and AUC values of up to 0.67 and 0.96 on an independent test set, respectively. The models are expected to be of high value, in particular to medicinal chemists and biochemists who can use Hit Dexter to identify compounds for which extra caution should be exercised with positive assay readouts. Hit Dexter is available as a free web service at http://hitdexter.zbh. uni-hamburg.de.
Fibroblast activation protein (FAP) has been extensively studied as a cancer biomarker for decades. Recently, small-molecule FAP inhibitors have been widely adopted as a targeting moiety of experimental theranostic radiotracers. Here we present a fast qPCR-based analytical method allowing FAP inhibition screening in a high-throughput regime. To identify clinically relevant compounds that might interfere with FAP-targeted approaches, we focused on a library of FDA-approved drugs. Using the DNA-linked Inhibitor Antibody Assay (DIANA), we tested a library of 2667 compounds within just a few hours and identified numerous FDA-approved drugs as novel FAP inhibitors. Among these, prodrugs of cephalosporin antibiotics and reverse transcriptase inhibitors, along with one elastase inhibitor, were the most potent FAP inhibitors in our dataset. In addition, by employing FAP DIANA in the quantification mode, we were able to determine FAP concentrations in human plasma samples. Together, our work expands the repertoire of FAP inhibitors, analyzes the potential interference of co-administered drugs with FAP-targeting strategies, and presents a sensitive and low-consumption ELISA alternative for FAP quantification with a detection limit of 50 pg/ml.
- MeSH
- Cephalosporins chemistry pharmacology MeSH
- Endopeptidases * metabolism MeSH
- Small Molecule Libraries pharmacology chemistry MeSH
- Humans MeSH
- Membrane Proteins * antagonists & inhibitors metabolism MeSH
- Molecular Structure MeSH
- High-Throughput Screening Assays * MeSH
- Drug Approval MeSH
- Serine Endopeptidases * metabolism MeSH
- United States Food and Drug Administration MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Gelatinases * antagonists & inhibitors metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- United States MeSH
BACKGROUND: Despite the selectivity of Tumor necrosis factor Related Apoptosis-Inducing Ligand (TRAIL) for cancer cell killing activity, breast cancer cells are resistant to TRAIL-induced apoptosis for various reasons. MATERIALS AND METHODS: From a functionally-characterized small-molecule dataset, CGP74514A was identified as a TRAIL sensitizer in MCF-7 breast cancer cells. Combination of sub-toxic dose of TRAIL with CGP74514A was evaluated in three TRAIL-resistant breast cancer cells, MCF-7, T47D and SK-BR-3. RESULTS: In all tested cells, CGP74514A enhanced TRAIL sensitivity. Combination treatment triggered apoptotic events faster than single treatment. Regarding its mechanism of action, CGP74514A reduced cytosolic X-linked inhibitor of apoptosis protein (XIAP). Small interfering RNA-mediated knockdown experiments showed that reduction of XIAP is the reason of sensitization. CONCLUSION: CGP74514A sensitized breast cancer cells to TRAIL via reduction of XIAP expression level.
- MeSH
- 2-Aminopurine administration & dosage analogs & derivatives pharmacology MeSH
- Apoptosis drug effects MeSH
- Down-Regulation drug effects MeSH
- Humans MeSH
- MCF-7 Cells MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms drug therapy metabolism MeSH
- TNF-Related Apoptosis-Inducing Ligand administration & dosage pharmacology MeSH
- Antineoplastic Combined Chemotherapy Protocols pharmacology MeSH
- Drug Synergism MeSH
- X-Linked Inhibitor of Apoptosis Protein metabolism MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients' expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
- Publication type
- Journal Article MeSH
- Review MeSH
Alzheimer's disease (AD) is a devastating neurological disorder characterized by the pathological accumulation of macromolecular Aβ and tau leading to neuronal death. Drugs approved to treat AD may ameliorate disease symptoms, however, no curative treatment exists. Aβ peptides were discovered to be substrates of adenosine triphosphate-(ATP)-binding cassette (ABC) transporters. Activators of these membrane-bound efflux proteins that promote binding and/or translocation of Aβ could revolutionize AD medicine. The knowledge about ABC transporter activators is very scarce, however, the few molecules that were reported contain substructural features of multitarget (pan-)ABC transporter inhibitors. A cutting-edge strategy to obtain new drug candidates is to explore and potentially exploit the recently proposed multitarget binding site of pan-ABC transporter inhibitors as anchor point for the development of innovative activators to promote Aβ clearance from the brain. Molecular associations between functional bioactivities and physicochemical properties of small-molecules are key to understand these processes. This study provides an analysis of a recently reported unique multitarget dataset for the correlation between multitarget bioactivity and physicochemistry. Six novel pan-ABC transporter inhibitors were validated containing substructural features of ABC transporter activators, which underpins the relevance of the multitarget binding site for the targeted development of novel AD diagnostics and therapeutics.
- MeSH
- ATP Binding Cassette Transporter, Subfamily G, Member 2 metabolism MeSH
- ATP-Binding Cassette Transporters metabolism MeSH
- Alzheimer Disease * drug therapy metabolism MeSH
- Biological Transport MeSH
- Chemical Phenomena MeSH
- Humans MeSH
- Brain metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH