buffer power
Dotaz
Zobrazit nápovědu
- MeSH
- acidobazická rovnováha * MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
Patients with sepsis have typically reduced concentrations of hemoglobin and albumin, the major components of noncarbonic buffer power (β). This could expose patients to high pH variations during acid-base disorders. The objective of this study is to compare, in vitro, noncarbonic β of patients with sepsis with that of healthy volunteers, and evaluate its distinct components. Whole blood and isolated plasma of 18 patients with sepsis and 18 controls were equilibrated with different CO2 mixtures. Blood gases, pH, and electrolytes were measured. Noncarbonic β and noncarbonic β due to variations in strong ion difference (βSID) were calculated for whole blood. Noncarbonic β and noncarbonic β normalized for albumin concentrations (βNORM) were calculated for isolated plasma. Representative values at pH = 7.40 were compared. Albumin proteoforms were evaluated via two-dimensional electrophoresis. Hemoglobin and albumin concentrations were significantly lower in patients with sepsis. Patients with sepsis had lower noncarbonic β both of whole blood (22.0 ± 1.9 vs. 31.6 ± 2.1 mmol/L, P < 0.01) and plasma (0.5 ± 1.0 vs. 3.7 ± 0.8 mmol/L, P < 0.01). Noncarbonic βSID was lower in patients (16.8 ± 1.9 vs. 24.4 ± 1.9 mmol/L, P < 0.01) and strongly correlated with hemoglobin concentration (r = 0.94, P < 0.01). Noncarbonic βNORM was lower in patients [0.01 (-0.01 to 0.04) vs. 0.08 (0.06-0.09) mmol/g, P < 0.01]. Patients with sepsis and controls showed different amounts of albumin proteoforms. Patients with sepsis are exposed to higher pH variations for any given change in CO2 due to lower concentrations of noncarbonic buffers and, possibly, an altered buffering function of albumin. In both patients with sepsis and healthy controls, electrolyte shifts are the major buffering mechanism during respiratory acid-base disorders.NEW & NOTEWORTHY Patients with sepsis are poorly protected against acute respiratory acid-base derangements due to a lower noncarbonic buffer power, which is caused both by a reduction in the major noncarbonic buffers, i.e. hemoglobin and albumin, and by a reduced buffering capacity of albumin. Electrolyte shifts from and to the red blood cells determining acute variations in strong ion difference are the major buffering mechanism during acute respiratory acid-base disorders.
Non-carbonic buffer power (βNC) of blood is a pivotal concept in acid-base physiology as it is employed in several acid-base evaluation techniques, including the Davenport nomogram and the Van Slyke equation used for Base excess estimation in blood. So far, βNC has been assumed to be independent of metabolic acid-base status of blood, despite theoretical rationale for the contrary. In the current study, we used CO2 tonometry to assess βNC in blood samples from 10 healthy volunteers, simultaneously analyzing the electrolyte shifts across the red blood cell membrane as these shifts translate the action of intracellular non-carbonic buffers to plasma. The βNC of the blood was re-evaluated after experimental induction of metabolic acidosis obtained by adding a moderate or high amount of either hydrochloric or lactic acid to the samples. Moreover, the impact of βNC and pCO2 on the Base excess of blood was examined. In the control samples, βNC was 28.0 ± 2.5 mmol/L. In contrast to the traditional assumptions, our data showed that βNC rose by 0.36 mmol/L for each 1 mEq/l reduction in plasma strong ion difference (p < 0.0001) and was independent of the acid used. This could serve as a protective mechanism that increases the resilience of blood to the combination of metabolic and respiratory acidosis. Sodium and chloride were the only electrolytes whose plasma concentration changed relevantly during CO2 titration. Although no significant difference was found between the electrolyte shifts in the two types of acidosis, we observed a slightly higher rate of chloride change in hyperchloremic acidosis, while the variation of sodium was more pronounced in lactic acidosis. Lastly, we found that the rise of βNC in metabolic acidosis did not induce a clinically relevant bias in the calculation of Base excess of blood and confirmed that the Base excess of blood was little affected by a wide range of pCO2.
- Publikační typ
- časopisecké články MeSH
- MeSH
- acidobazická rovnováha * MeSH
- krevní proteiny * MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
Polymeric macromolecules of well-designed structures and specific properties open promising directions in the capillary entangled polymer electrophoresis. Pluronic F-127, as a thermoassociating polymer, possesses some unique properties that can be utilized in capillary entangled polymer electrophoresis of amino acids, peptides and proteins. In this study, we studied properties of Pluronic F-127 polymer as an additive to BGE for the separation of peptides and proteins. The influence of the thermoassociation on separation selectivity was studied. The addition of Pluronic caused severe instabilities of the electrical current and the signal of the UV detector. This study reveals remarkable positive effect of a low pressure applied to the inlet buffer vial during the analysis, which apparently stabilizes the electrical current and the detector signal. The effect of hydrodynamic flow induced by the pressure applied on the separation efficiency was studied and the significance of this effect was discussed. Pluronic F-127, as a representative of synthetic macromolecules, was compared with dextran, as a representative of natural polymers, in terms of separation power, selectivity and repeatability of migration times.
The establishment of an efficient reaction mixture represents a crucial part of capillary electrophoresis based on-line enzymatic assays. For ketamine N-demethylation to norketamine mediated by the cytochrome P450 3A4 enzyme, mixing of enzyme and reactants in the incubation buffer at physiological pH was studied by computer simulation. A dynamic electrophoretic simulator that encompasses Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure driven flow was utilized. The simulator in the diffusion mode was used to predict transverse diffusional reactant mixing occurring during hydrodynamic plug injection of configurations featuring four and seven plugs. The same simulator in the electrophoretic mode was applied to study electrophoretic reactant mixing caused by voltage application in absence of buffer flow. Resulting conclusions were experimentally verified with enantioselective analysis of norketamine in a background electrolyte at low pH. Furthermore, simulations visualize buffer changes that occur upon power application between incubation buffer and background electrolyte and have an influence on the reaction mixture.
Heteroarylaminoethanol derivates are drugs which affect sympathetic nervous system and are used for medications of hypertension. In solutions they behave like weak bases and their pK(a) values represent important information on their potential biological uptake, pharmacological activity and in vivo biodisponsibility. This article brings the measurement of pK(a) values of the series of seven new important heteroarylaminoethanols, compounds with potential vasodilating, beta-adrenolytic and antioxidant activity, by capillary zone electrophoresis (CZE) with diode-array detection. It has been shown that capillary zone electrophoresis measurements of pK(a) can be easily performed with very small quantities of studied substances, and, due to CZE separation power, the purity of samples is not of key importance. Moreover, the CZE method is fast and reliable, providing that suitable operational conditions are selected. The method is based on the measurement of the effective mobility curves within a suitable pH range and related regression analysis where pK(BH)(+) and electrophoretic mobility of BH(+) are explicitly involved. The selection of sufficient operational buffers is of key importance for accurate and reproducible results, and, this article brings step by step the consideration procedure involved in this process. Further, this paper brings principles of least square regression analysis of non-linear function corresponding to exact explicit formula for mobility curve of monovalent weak base.
- MeSH
- antihypertenziva chemická syntéza chemie MeSH
- chemické modely MeSH
- elektroforéza kapilární MeSH
- ethanolaminy chemická syntéza chemie MeSH
- farmaceutická technologie metody MeSH
- financování organizované MeSH
- koncentrace vodíkových iontů MeSH
- metoda nejmenších čtverců MeSH
- nelineární dynamika MeSH
- osmolární koncentrace MeSH
- pufry MeSH
- reprodukovatelnost výsledků MeSH
OBJECTIVES: To evaluate the base excess response during acute in vivo carbon dioxide changes. DESIGN: Secondary analysis of individual participant data from experimental studies. SETTING: Three experimental studies investigating the effect of acute in vivo respiratory derangements on acid-base variables. SUBJECTS: Eighty-nine (canine and human) carbon dioxide exposures. INTERVENTIONS: Arterial carbon dioxide titration through environmental chambers or mechanical ventilation. MEASUREMENTS AND MAIN RESULTS: For each subject, base excess was calculated using bicarbonate and pH using a fixed buffer power of 16.2. Analyses were performed using linear regression with arterial dioxide (predictor), base excess (outcome), and studies (interaction term). All studies show different baselines and slopes for base excess across carbon dioxide titrations methods. Individual subjects show substantial, and potentially clinically relevant, variations in base excess response across the hypercapnic range. Using a mathematical simulation of 10,000 buffer power coefficients we determined that a coefficient of 12.1 (95% CI, 9.1-15.1) instead of 16.2 facilitates a more conceptually appropriate in vivo base excess equation for general clinical application. CONCLUSIONS: In vivo changes in carbon dioxide leads to changes in base excess that may be clinically relevant for individual patients. A buffer power coefficient of 16.2 may not be appropriate in vivo and needs external validation in a range of clinical settings.
- MeSH
- acidobazická rovnováha * fyziologie MeSH
- dospělí MeSH
- hyperkapnie patofyziologie metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- oxid uhličitý * metabolismus MeSH
- poruchy acidobazické rovnováhy patofyziologie metabolismus MeSH
- psi MeSH
- umělé dýchání MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
New strategies for the fast, efficient, and environmentally friendly extraction of proteins are required to isolate desired bioactive compounds from a technological point of view. In this study, utilization of the pressurized water extraction (PWE) at low temperature (40 °C) for isolation of mistletoe proteins was investigated. PWE effectiveness, based on protein fingerprints, were compared with those obtained by conventional extractions using 10 mmol L-1 Tris-HCl buffer pH 8.3, 50 mmol L-1 phosphate buffer pH 7, or deionized water. The extracts were precipitated using acetone, trichloroacetic acid (TCA), and 20% (w/v) TCA/acetone and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PWE was more or equally efficient for isolation of mistletoe proteins than evaluated conventional extraction methods. The proteomic analysis combining mass spectrometry and database searching confirmed the presence of 35 proteins in PWE extracts precipitated by acetone, which was the most compounds identified from all studied extracts. The PWE high extraction power was revealed for multiple viscotoxin isoforms and specific enzymes indispensable for the synthesis of terpenes.
- MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- listy rostlin MeSH
- proteomika MeSH
- Viscum album * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
The HPLC analyses on the monolithic stationary phase were employed for rapid determination of lipophilicity of the two sets of newly synthesized potential antituberculotic agents. The analyses utilized the mixture of methanol and phosphate buffer (pH 7.4) as a mobile phase and a flow rate of 4mL/min. Monolithic stationary phase enabled to significantly reduce the time of analyses, achieve appropriate peak shapes for all tested compounds as well as the separation of positional isomers. Furthermore, the theoretical lipophilic parameters (logP) for all compounds were calculated employing the chemical programs (e.g., ACD/logP, HyperChem, miLogP, AlogP, KOWWIN and COSMOFrag, etc.). The experimental data (logk) and calculated logP values were compared by linear regression analysis. The highest correlation for both series was obtained for KOWWIN and miLogP programs. However, capability of particular chemical software to precisely predict lipophilicity of a compound is structurally dependent. Thus the predictive power of the selected program should be verified using experimental method. The results of this study documented that experimental determination of lipophilicity using HPLC on monolithic stationary phase is practical and reasonable for this purpose.