Interferon‐induced transmembrane proteins (IFITMs) are frequently overexpressed in cancer cells, including cervical carcinoma cells, and play a role in the progression of various cancer types. However, their mechanisms of action remain incompletely understood. In the present study, by employing a combination of surface membrane protein isolation and quantitative mass spectrometry, it was comprehensively described how the IFITM1 protein influences the composition of the cervical cancer cell surfaceome. Additionally, the effects of interferon‐γ on protein expression and cell surface exposure were evaluated in the presence and absence of IFITM1. The IFITM1‐regulated membrane and membrane‐associated proteins identified are involved mainly in processes such as endocytosis and lysosomal transport, cell‐cell and cell‐extracellular matrix adhesion, antigen presentation and the immune response. To complement the proteomic data, gene expression was analyzed using reverse transcription‐quantitative PCR to distinguish whether the observed changes in protein levels were attributable to transcriptional regulation or differential protein dynamics. Furthermore, the proteomic and gene expression data are supported by functional studies demonstrating the impact of the IFITM1 and IFITM3 proteins on the adhesive, migratory and invasive capabilities of cervical cancer cells, as well as their interactions with immune cells.
- MeSH
- Cell Adhesion MeSH
- Antigens, Differentiation * metabolism genetics MeSH
- Phenotype MeSH
- Interferon-gamma pharmacology metabolism MeSH
- Humans MeSH
- Membrane Proteins * metabolism genetics MeSH
- Cell Line, Tumor MeSH
- Uterine Cervical Neoplasms * pathology genetics metabolism immunology MeSH
- Cell Movement MeSH
- RNA-Binding Proteins * metabolism genetics MeSH
- Proteome * MeSH
- Proteomics methods MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Capillary and microchip electrophoresis plays an important role in the analysis of the chemical composition of plants and nutrient soils, which finds applications in plant physiology, agrochemistry, medicine, toxicology and food science. Electrophoretic methods are used to determine minerals such as nutrients, heavy metal ions, primary and secondary metabolites, herbicides, phytohormones, peptides, proteins and extracellular vesicles. Progress is particularly evident in the following topics: i) development of mobile electrophoretic analysers for field-based monitoring of soil mineral supply, ii) direct analysis of xylem sap without sample treatment, iii) coupling of capillary and microchip electrophoresis with mass spectrometry for comprehensive metabolome and proteome characterization, iv) determination of secondary metabolites as biologically active compounds with a range of therapeutic and toxicological effects, v) monitoring of herbicides and their degradation dynamics, vi) research on plant exudates, extracellular vesicles and specific protein interactions.
- MeSH
- Electrophoresis, Capillary methods MeSH
- Herbicides analysis MeSH
- Mass Spectrometry MeSH
- Plants * chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Changes in cellular physiology and proteomic homeostasis accompanied the initiation and progression of colorectal cancer. Thus, ubiquitination represents a central regulatory mechanism in proteome dynamics. However, the complexity of the ubiquitinating network involved in carcinogenesis remains unclear. This study revealed the tumor-suppressive role of the ubiquitin ligase Cullin4A (CUL4A) in the intestine. We showed that simultaneous loss of CUL4A and hyperactivation of the Wnt pathway promotes tumor development in the distal colon. This tumor development is caused by an accumulation of the inactive SMAD3, a TGF-β pathway mediator. Depletion of CUL4A resulted in stabilization of HUWE1, which attenuated SMAD3 function. We showed a correlation between the intracellular localization of CUL4A and colorectal cancer progression, where nuclear CUL4A localization correlates with advanced colorectal cancer progression. In summary, we identified CUL4A as an important regulator of SMAD3 signal transduction competence in a HUWE1-dependent manner and demonstrated a critical role for the crosstalk between ubiquitination and the Wnt/TGF-β signaling pathways in gastrointestinal homeostasis.
- MeSH
- HCT116 Cells MeSH
- Colorectal Neoplasms * pathology genetics metabolism MeSH
- Cullin Proteins * metabolism genetics MeSH
- Humans MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Tumor Suppressor Proteins * metabolism genetics MeSH
- Smad3 Protein * metabolism genetics MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Wnt Signaling Pathway MeSH
- Ubiquitination MeSH
- Ubiquitin-Protein Ligases * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.
- MeSH
- Carcinogenesis metabolism MeSH
- Humans MeSH
- Protein Interaction Mapping MeSH
- Protein Interaction Maps * MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms * metabolism pathology MeSH
- NF-kappa B * metabolism MeSH
- Protein-Arginine N-Methyltransferases metabolism MeSH
- Signal Transduction MeSH
- Transcription Factor RelA * metabolism MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
- MeSH
- Heterochromatin * MeSH
- Membrane Proteins MeSH
- Brain MeSH
- Mice MeSH
- Proteome * MeSH
- Proteomics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In plants, membrane compartmentalization requires vesicle trafficking for communication among distinct organelles. Membrane proteins involved in vesicle trafficking are highly dynamic and can respond rapidly to changes in the environment and to cellular signals. Capturing their localization and dynamics is thus essential for understanding the mechanisms underlying vesicular trafficking pathways. Quantitative mass spectrometry and imaging approaches allow a system-wide dissection of the vesicular proteome, the characterization of ligand-receptor pairs and the determination of secretory, endocytic, recycling and vacuolar trafficking pathways. In this review, we highlight major proteomics and imaging methods employed to determine the location, distribution and abundance of proteins within given trafficking routes. We focus in particular on methodologies for the elucidation of vesicle protein dynamics and interactions and their connections to downstream signalling outputs. Finally, we assess their biological applications in exploring different cellular and subcellular processes.
Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.
Vestibular schwannoma is the most common benign neoplasm of the cerebellopontine angle. Its first symptoms include hearing loss, tinnitus, and vestibular symptoms, followed by cerebellar and brainstem symptoms, along with palsy of the adjacent cranial nerves. However, the clinical picture has unpredictable dynamics and currently, there are no reliable predictors of tumor behavior. Hence, it is desirable to have a fast routine method for analysis of vestibular schwannoma tissues at the molecular level. The major objective of this study was to verify whether a technique using in-sample specific protein digestion with trypsin would have the potential to provide a proteomic characterization of these pathological tissues. The achieved results showed that the use of this approach with subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of released peptides allowed a fast identification of a considerable number of proteins in two differential parts of vestibular schwannoma tissue as well as in tissues of control healthy samples. Furthermore, mathematical analysis of MS data was able to discriminate between pathological vestibular schwannoma tissues and healthy tissues. Thus, in-sample protein digestion combined with LC-MS/MS separation and identification of released specific peptides followed by mathematical analysis appears to have the potential for routine characterization of vestibular schwannomas at the molecular level. Data are available via ProteomeXchange with identifier PXD045261.
- MeSH
- Chromatography, Liquid methods MeSH
- Humans MeSH
- Peptide Fragments * analysis chemistry metabolism MeSH
- Peptides metabolism MeSH
- Proteolysis MeSH
- Proteomics methods MeSH
- Tandem Mass Spectrometry methods MeSH
- Trypsin chemistry MeSH
- Neuroma, Acoustic * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The focus of this review is on the proteomic approaches applied to the study of the qualitative/quantitative changes in mitochondrial proteins that are related to impaired mitochondrial function and consequently different types of pathologies. Proteomic techniques developed in recent years have created a powerful tool for the characterization of both static and dynamic proteomes. They can detect protein-protein interactions and a broad repertoire of post-translation modifications that play pivotal roles in mitochondrial regulation, maintenance and proper function. Based on accumulated proteomic data, conclusions can be derived on how to proceed in disease prevention and treatment. In addition, this article will present an overview of the recently published proteomic papers that deal with the regulatory roles of post-translational modifications of mitochondrial proteins and specifically with cardiovascular diseases connected to mitochondrial dysfunction.
The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted β-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.
- MeSH
- Cysteine metabolism MeSH
- Cysteine Proteases * metabolism MeSH
- Phagosomes metabolism MeSH
- Humans MeSH
- Lysosomes metabolism MeSH
- Peptide Hydrolases metabolism MeSH
- Proteomics MeSH
- Trichomonas vaginalis * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH