Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.
- MeSH
- Antifungal Agents * pharmacokinetics pharmacology MeSH
- Bacteria growth & development MeSH
- Models, Biological * MeSH
- Mitochondria, Liver metabolism MeSH
- Rats MeSH
- Monensin * pharmacokinetics pharmacology MeSH
- Oxidation-Reduction drug effects MeSH
- Cytochrome P-450 Enzyme System metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Water pollution is a significant and growing problem throughout the world, especially in developing countries. In order to minimize environmental problems, catalysts have increasingly been designed to remove pollutants from the water. In an attempt to innovate by the creation of new low-cost alternatives to efficiently remove pollutants, the enzymatic treatment has been intensely studied for this purpose. Reactions catalyzed by enzymes are able to perform specific treatments, commonly with high rates of the final products. With this, the enzyme, peroxidase, is a promising candidate as a bioremediation catalyst. The efficiency of oxidoreductive enzymes, such as horseradish peroxidase (HRP) and soybean peroxidase (SP) have been studied, given that their performance depends on the substrate. In this investigation, experimental techniques and theoretical calculations have been employed in order to investigate the oxidative process for the ferulic acid and bromophenol blue dyes, performed by HRP and SP. Both enzymes showed a comparable behavior with respect to ferulic acid substrate. On the other hand, by utilizing bromophenol blue dye as a substrate, the behavior of the employed catalysts was significantly different. Experimental data have shown that HRP was more active toward bromophenol blue when compared to ferulic acid, being more rapidly degraded by the HRP enzyme. This tendency was confirmed by our theoretical docking, PM6 semi-empirical method, and DFT calculation results, in which the interaction, binding energies, and transition states were determined.
- MeSH
- Biodegradation, Environmental * MeSH
- Bromphenol Blue chemistry MeSH
- Catalytic Domain MeSH
- Catalysis MeSH
- Kinetics MeSH
- Coumaric Acids chemistry MeSH
- Environmental Pollutants * chemistry MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Oxidation-Reduction MeSH
- Peroxidases * chemistry metabolism MeSH
- Molecular Docking Simulation MeSH
- Substrate Specificity MeSH
- Models, Theoretical * MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
Magnetron sputtering was employed for the deposition of cobalt oxide thin films on stainless steel meshes. Catalysts prepared by sputtering in inert and oxidation atmosphere were compared with those obtained by electrochemical deposition and hydrothermal synthesis. Systematic characterization using X-ray diffraction, scanning electron microscopy, N2 physisorption, infrared spectroscopy, Raman spectroscopy, and temperature-programmed reduction by hydrogen allowed detailed monitoring of their physicochemical properties. Ethanol gas-phase oxidation was employed as a model reaction to reveal the catalytic performance of the catalysts. It was shown that the catalyst prepared by magnetron sputtering in oxidation atmosphere exhibited the best mechanical stability among all studied catalysts. Moreover, its catalytic activity was 18 times higher than that of pelletized commercial cobalt oxide.
- MeSH
- Catalysis MeSH
- Cobalt * MeSH
- Oxides * MeSH
- Volatile Organic Compounds * MeSH
- Publication type
- Journal Article MeSH
Methods for the asymmetric transfer hydrogenation (ATH) of ketones and imines are still being intensively studied and developed. Of foremost interest is the use of Noyori's [RuCl(η⁶-arene)(N-TsDPEN)] complexes in the presence of a hydrogen donor (i-PrOH, formic acid). These complexes have found numerous practical applications and have been extensively modified. The resulting derivatives have been heterogenized, used in ATH in water or ionic liquids and even some attempts have been made to approach the properties of biocatalysts. Therefore, an appropriate modification of the catalyst that suits the specific requirements for the reaction conditions is very often readily available. The mechanism of the reaction has also been explored to a great extent. Model substrates, acetophenone (a ketone) and 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline (an imine), are both reduced by this Ru catalytic system with almost perfect selectivity. However, in each case the major product is a different enantiomer (S- for an alcohol, R- for an amine when the S,S-catalyst is used), which demanded an in-depth mechanistic investigation. Full-scale molecular modelling of this system enabled us to visualize the plausible 3D structures of the transition states, allowing the proposition of a viable explanation of previous experimental findings.
Powdered samples of new and old gasoline catalysts (Pt, Pd, Rh) and new and old diesel (Pt) catalysts were subjected to a pH-static leaching procedure (pH 2-9) coupled with thermodynamic modeling using PHREEQC-3 to verify the release and mobility of PGEs (platinum group elements). PGEs were released under acidic conditions, mostly exhibiting L-shaped leaching patterns: diesel old: 5.47, 0.005, 0.02; diesel new: 68.5, 0.23, 0.11; gasoline old: 0.1, 11.8, 4.79; gasoline new 2.6, 25.2, 35.9 in mg kg(-1) for Pt, Pd and Rh, respectively. Only the new diesel catalyst had a strikingly different leaching pattern with elevated concentrations at pH 4, probably influenced by the dissolution of the catalyst carrier and washcoat. The pH-static experiment coupled with thermodynamic modeling was found to be an effective instrument for understanding the leaching behavior of PGEs under various environmental conditions, and indicated that charged Pt and Rh species may be adsorbed on the negatively charged surface of kaolinite or Mn oxides in the soil system, whereas uncharged Pd and Rh species may remain mobile in soil solutions.
A new concept of a photoremovable chiral auxiliary (PCA), based on the chiral benzoin chromophore, is introduced. This moiety can control the asymmetric formation of a Diels-Alder adduct, and then be removed in a subsequent photochemical step in high chemical and quantum yields. Selective formation of the products at up to 96% ee was observed in the presence of a Lewis acid catalyst in the case of a 2-methoxybenzoinyl chiral auxiliary.
New compounds with the ethyl hexahydro-1H-pyrrolo[3,2-c]quinoline-2-carboxylate skeleton were prepared by microwave-assisted intramolecular 1,3-dipolar cycloaddition reactions. The reactions were carried out under solvent-free conditions and compared with the same reaction in the presence of a solvent and a catalyst. Steric effects on the selectivity of the reaction were noted and evaluated.
The aim of this study is to identify the optimum thermal conversion of Chlorella vulgaris with neuro-evolutionary approach. A Progressive Depth Swarm-Evolution (PDSE) neuro-evolutionary approach is proposed to model the Thermogravimetric analysis (TGA) data of catalytic thermal degradation of Chlorella vulgaris. Results showed that the proposed method can generate predictions which are more accurate compared to other conventional approaches (>90% lower in Root Mean Square Error (RMSE) and Mean Bias Error (MBE)). In addition, Simulated Annealing is proposed to determine the optimal operating conditions for microalgae conversion from multiple trained ANN. The predicted optimum conditions were reaction temperature of 900.0 °C, heating rate of 5.0 °C/min with the presence of HZSM-5 zeolite catalyst to obtain 88.3% of Chlorella vulgaris conversion.
- MeSH
- Chlorella vulgaris * MeSH
- Catalysis MeSH
- Microalgae * MeSH
- Neural Networks, Computer MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
This paper deals with the effect of water and catalyst (KOH) amount on the quantity and quality of transesterification products of rapeseed oil by methanol, the methyl ester phase (i.e. yield, conversion), and the side-product, the glycerol phase (i.e. density, viscosity, the mass fraction of glycerol, esters, soaps). The dependencies were described by statistical models. The transesterification was carried out at constant reaction conditions (90 min reaction time, 400 rpm, 60 degrees Celsius). Twelve experiments with the independent factors, amount of potassium hydroxide (0.65-0.9 mg per gram of oil) and total amount of water (0.24-1.42 mg per gram of oil) naturally present in the reaction components or formed by the neutralisation reaction of free fatty acids and of added water. The data were analyzed by linear regression with respect to regression triplet (complex critical analysis of the model, data and regression method). The analysis resulted in a set of linear and/or quadratic models consisting of statistically proven terms at a statistical significance level of 0.05 and demonstrated that ester in the glycerol phase increases with increasing amount of soaps.
- MeSH
- Biomechanical Phenomena MeSH
- Chemical Fractionation MeSH
- Models, Chemical MeSH
- Potassium pharmacology MeSH
- Esterification drug effects MeSH
- Esters metabolism MeSH
- Glycerol pharmacology MeSH
- Bicarbonates pharmacology MeSH
- Hydrolysis drug effects MeSH
- Hydroxides pharmacology MeSH
- Methane metabolism MeSH
- Soaps MeSH
- Plant Oils metabolism MeSH
- Potassium Compounds pharmacology MeSH
- Carbonates pharmacology MeSH
- Viscosity drug effects MeSH
- Water pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution.
- MeSH
- Phenol metabolism MeSH
- Phenols metabolism MeSH
- Coke MeSH
- Cyanides metabolism MeSH
- Wastewater * MeSH
- Monophenol Monooxygenase MeSH
- Publication type
- Journal Article MeSH