phytocannabinoid
Dotaz
Zobrazit nápovědu
This study deals with the comprehensive phytochemical composition and antiviral activity against SARS-CoV-2 of acidic (non-decarboxylated) and neutral (decarboxylated) ethanolic extracts from seven high-cannabidiol (CBD) and two high-Δ9-tetrahydrocannabinol (Δ9-THC) Cannabis sativa L. genotypes. Their secondary metabolite profiles, phytocannabinoid, terpenoid, and phenolic, were determined by LC-UV, GC-MS, and LC-MS/MS analyses, respectively. All three secondary metabolite profiles, cannabinoid, terpenoid, and phenolic, varied significantly among cannabinoid extracts of different genotypes. The dose-response analyses of their antiviral activity against SARS-CoV-2 showed that only the single predominant phytocannabinoids (CBD or THC) of the neutral extracts exhibited antiviral activity (all IC50 < 10.0 μM). The correlation matrix between phytoconstituent levels and antiviral activity revealed that the phenolic acids, salicylic acid and its glucoside, chlorogenic acid, and ferulic acid, and two flavonoids, abietin, and luteolin, in different cannabinoid extracts from high-CBD genotypes are implicated in the genotype-distinct antagonistic effects on the predominant phytocannabinoid. On the other hand, these analyses also suggested that the other phytocannabinoids and the flavonoid orientin can enrich the extract's pharmacological profiles. Thus, further preclinical studies on cannabinoid extract formulations with adjusted non-phytocannabinoid compositions are warranted to develop supplementary antiviral treatments.
Cannabidiol (CBD) is a phytocannabinoid from Cannabis sativa L., in which there is currently growing interest for medicinal use. Here, we focused on the safety and pharmacokinetics of a CBD-rich (77 %, w/w) full-spectrum hemp extract in male and female rats. A 90-day sub-chronic toxicity assay was conducted with doses of 0.5, 5, 10, and 35 mg CBD extract/kg/day administered orogastrically. No adverse effects or disruption in organ or body weight, behaviour, locomotion, food intake, or impact on morbidity/mortality were observed. Pathomorphological examination showed no gastrointestinal or liver changes. Blood cell analysis showed a significant (p < 0.05) decrease in the number of leukocytes for both sexes, and a significant difference (p < 0.01 or 0.05) between the control and treated animals for mean corpuscular haemoglobin concentration, mean corpuscular volume of erythrocytes, and percentage of neutrophils and monocytes. However, blood cell analysis revealed significant (p < 0.05) sex-dependent differences, such as haematocrit and erythrocyte count. The levels of ions (Ca2+, Na+, K+ and Cl-), alkaline phosphatase activity, and creatinine level in treated animals were also observed for both sexes. Males exhibited decreased alanine transaminase activities, and females exhibited hyperalbuminemia (p < 0.01). CBD was quantified in treated animals in a dose-dependent manner, with statistical significance varying from p < 0.05 to 0.0001. The accumulation of CBD in the individual tissues increased in the order: brain < serum < liver < heart << kidney <<< muscle and skin. The results indicated sex-dependent latent disruption of kidney and liver homeostasis, most likely reversible in nature.
- MeSH
- Cannabis * chemie MeSH
- kanabidiol * toxicita farmakokinetika MeSH
- krysa rodu rattus MeSH
- potkani Sprague-Dawley MeSH
- rostlinné extrakty * toxicita MeSH
- sexuální faktory MeSH
- testy subchronické toxicity MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Introduction: The use of Cannabis sativa L. in health care requires stringent care for the optimal production of the bioactive compounds. However, plant phenotypes and the content of secondary metabolites, such as phytocannabinoids, are strongly influenced by external factors, such as nutrient availability. It has been shown that phytocannabinoids can exhibit selective cytotoxicity against various cancer cell lines while protecting healthy tissue from apoptosis. Research Aim: This study aimed to clarify the cytotoxic effect of cannabis extracts on colorectal cell lines by identifying the main active compounds and determining their abundance and activity across all developmental stages of medical cannabis plants cultivated under hydroponic conditions. Materials and Methods: Dimethyl sulfoxide extracts of medical cannabis plants bearing the genotype classified as chemotype I were analyzed by high-performance liquid chromatography, and their cytotoxic activity was determined by measuring cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay on the human colon cancer cell lines, Caco-2 and HT-29, and the normal human epithelial cell line, CCD 841 CoN. Results: The most abundant phytocannabinoid in cannabis extracts was tetrahydrocannabinolic acid (THCA). Its maximum concentrations were reached from the 7th to the 13th plant vegetation week, depending on the nutritional cycle and treatment. Almost all extracts were cytotoxic to the human colorectal cancer (CRC) cell line HT-29 at lower concentrations than the other cell lines. The phytocannabinoids that most affected the cytotoxicity of individual extracts on HT-29 were cannabigerol, Δ9-tetrahydrocannabinol, cannabidiol, cannabigerolic acid, and THCA. The tested model showed almost 70% influence of these cannabinoids. However, THCA alone influenced the cytotoxicity of individual extracts by nearly 65%. Conclusions: Phytocannabinoid extracts from plants of the THCA-dominant chemotype interacted synergistically and showed selective cytotoxicity against the CRC cell line, HT-29. This positive extract response indicates possible therapeutic value.
- MeSH
- Caco-2 buňky MeSH
- Cannabis * chemie MeSH
- hydroponie MeSH
- lidé MeSH
- marihuana pro léčebné účely * MeSH
- tetrahydrokanabinol analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cannabis sativa L. is a plant belonging to the Cannabaceae family known primarily for its recreational use due to the psychoactive properties of Δ9-tetrahydrocannabinol (THC). Despite this, several compounds belonging to the category of phytocannabinoids have shown in recent years a number of potentially promising therapeutic effects that have increased the interest in the pharmaceutical field towards this plant. However, the content of these compounds is very variable and influenced by different factors, such as growing conditions and time of the year. An indication of the status and age of Cannabis samples is provided by the content of CBN, a minor phytocannabinoid and degradation product of other phytocannabinoids, including THC. In this research work an innovative, solid state analytical approach has been developed to observe and evaluate the variations in the content of two phytocannabinoids (CBN and CBD) in Cannabis-derived products over time. In order to simulate the ageing of the Cannabis samples, an artificially accelerated ageing procedure has been developed and optimised by using high temperatures. The analyses were carried out using an innovative ATR-FTIR method for solid state analysis, enabling direct analysis of a solid sample without any pretreatment phase. This study has allowed the development of an innovative analytical approach for the evaluation of the age and state of conservation of Cannabis samples and may be a useful tool both in the industrial, pharmaceutical and forensic fields.
- MeSH
- Cannabis * chemie MeSH
- časové faktory MeSH
- kanabidiol analýza chemie MeSH
- kanabinoidy * analýza chemie MeSH
- rostlinné extrakty chemie analýza MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- stabilita léku MeSH
- tetrahydrokanabinol analýza chemie MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: The aim of this study was to: (1) evaluate the anti-inflammatory effects of cannabidiol (CBD) on primary cultures of human gingival fibroblasts (HGFs) and (2) to clinically monitor the effect of CBD in subjects with periodontitis. BACKGROUND: The use of phytocannabinoids is a new approach in the treatment of widely prevalent periodontal disease. MATERIALS AND METHODS: Cannabinoid receptors were analyzed by western blot and interleukin production detected using enzyme immunoassay. Activation of the Nrf2 pathway was studied via monitoring the mRNA level of heme oxygenase-1. Antimicrobial effects were determined by standard microdilution and 16S rRNA screening. In the clinical part, a placebo-control double-blind randomized study was conducted (56 days) in three groups (n = 90) using dental gel without CBD (group A) and with 1% (w/w) CBD (group B) and corresponding toothpaste (group A - no CBD, group B - with CBD) for home use to maintain oral health. Group C used dental gel containing 1% chlorhexidine digluconate (active comparator) and toothpaste without CBD. RESULTS: Human gingival fibroblasts were confirmed to express the cannabinoid receptor CB2. Lipopolysaccharide-induced cells exhibited increased production of pro-inflammatory IL-6 and IL-8, with deceasing levels upon exposure to CBD. CBD also exhibited antimicrobial activities against Porphyromonas gingivalis, with an MIC of 1.5 μg/mL. Activation of the Nrf2 pathway was also demonstrated. In the clinical part, statistically significant improvement was found for the gingival, gingival bleeding, and modified gingival indices between placebo group A and CBD group B after 56 days. CONCLUSIONS: Cannabidiol reduced inflammation and the growth of selected periodontal pathogenic bacteria. The clinical trial demonstrated a statistically significant improvement after CBD application. No adverse effects of CBD were reported by patients or observed upon clinical examination during the study. The results are a promising basis for a more comprehensive investigation of the application of non-psychotropic cannabinoids in dentistry.
- MeSH
- antiflogistika terapeutické užití farmakologie MeSH
- chlorhexidin terapeutické užití farmakologie analogy a deriváty MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- faktor 2 související s NF-E2 MeSH
- fibroblasty * účinky léků MeSH
- gingiva * účinky léků MeSH
- gingivitida * farmakoterapie MeSH
- hemoxygenasa-1 MeSH
- interleukin-6 analýza MeSH
- interleukin-8 účinky léků MeSH
- kanabidiol * farmakologie terapeutické užití MeSH
- kultivované buňky MeSH
- lidé středního věku MeSH
- lidé MeSH
- parodontitida farmakoterapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
Kanabinoidy, aktivní složky rostliny Cannabis, ovlivňují širokou škálu fyziologických procesů prostřednictvím endokanabinoidního systému, který zahrnuje receptory CB1 a CB2, endogenní ligandy a regulační enzymy. Tento přehledový článek shrnuje mechanismy působení fytokanabinoidů, syntetických kanabinoidů a endokanabi noidů, včetně jejich farmakologických vlastností, terapeutického potenciálu a rizik spojených s jejich použitím. Diskutována je také toxicita syntetických kanabinoidů, jejichž rekreační užívání představuje významnou hrozbu pro veřejné zdraví. Závěrem jsou uvedeny současné aplikace kanabinoidů v klinické praxi, zejména při léčbě bolesti, nevolnosti a neurologických onemocnění.
Cannabinoids, active compounds of the Cannabis plant, influence a wide range of physiological processes through the endocannabinoid system, comprising CB1 a CB2 receptors, endogenous ligands, and regulatory enzymes. This review summarizes the mechanisms of action of phytocannabinoids, synthetic cannabinoids, and endocannabinoids, including their pharmacological properties, therapeutic potential, and associated risks. The article also discusses the toxicity of synthetic cannabinoids, highlighting the public health threat posed by their recreational use. Finally, it explores current clinical applications of cannabinoids, particularly in the treatment of pain, nausea, and neurological disorders.
- Klíčová slova
- syntetické kanabinoidy,
- MeSH
- endokanabinoidy farmakologie terapeutické užití MeSH
- kanabinoidy farmakologie terapeutické užití MeSH
- lidé MeSH
- marihuana pro léčebné účely * farmakologie terapeutické užití MeSH
- receptor kanabinoidní CB1 MeSH
- receptor kanabinoidní CB2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
This study examined the biotransformation of phytocannabinoids in human hepatocytes. The susceptibility of the tested compounds to transformations in hepatocytes exhibited the following hierarchy: cannabinol (CBN) > cannabigerol (CBG) > cannabichromene (CBC) > cannabidiol (CBD). Biotransformation included hydroxylation, oxidation to a carboxylic acid, dehydrogenation, hydrogenation, dehydration, loss/shortening of alkyl, glucuronidation and sulfation. CBN was primarily metabolized by oxidation of a methyl to a carboxylic acid group, while CBD, CBG and CBC were preferentially metabolized by direct glucuronidation. The study also screened for the activity of recombinant human cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs), which could catalyze the hydroxylation and glucuronidation of the tested compounds, respectively. We found that CBD was hydroxylated mainly by CYPs 2C8, 2C19, 2D6; CBN by 1A2, 2C9, 2C19 and 2D6; and CBG by 2B6, 2C9, 2C19 and 2D6. CBC exhibited higher susceptibility to CYP-mediated transformation than the other tested compounds, mainly with CYPs 1A2, 2B6, 2C8, 2C19, 2D6 and 3A4 being involved. Further, CBD was primarily glucuronidated by UGTs 1A3, 1A7, 1A8, 1A9 and 2B7; CBN by 1A7, 1A8, 1A9 and 2B7; CBG by 1A3, 1A7, 1A8, 1A9, 2B4, 2B7 and 2B17; and the glucuronidation of CBC was catalyzed by UGTs 1A1, 1A8, 1A9 and 2B7.
- MeSH
- biotransformace MeSH
- glukuronosyltransferasa metabolismus MeSH
- jaterní mikrozomy * metabolismus MeSH
- kyseliny karboxylové MeSH
- lidé MeSH
- systém (enzymů) cytochromů P-450 * metabolismus MeSH
- uridindifosfát metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although medical cannabis was legalized in Czechia in 2013 and its use in topical treatments of skin disorders is now allowed, galenic formulations prepared from medical cannabis have not been widely implemented in the Czech healthcare system. One of the main reasons is the lack of a straightforward standardized protocol for their preparation. Cannabinoids, e.g., cannabidiol (CBD) and tetrahydrocannabinol (THC), have been shown to have therapeutic effects on various skin conditions, such as atopic dermatitis, psoriasis, scleroderma, acne and skin pigmentation. Recognizing the potential of dermatological treatment with medical cannabis, the present study aimed to evaluate the extraction capacity of various pharmaceutical bases for cannabinoids and the stability of prepared galenic formulations for dermatological applications with respect to cannabinoid content. The results showed that the stability of cannabinoids in formulations depended on the bases' physical and chemical properties. The highest THC decomposition was observed in cream bases and Vaseline, with estimated percentage loss of total content of up to 5.4% and 5.6% per week, respectively. In contrast, CBD was more stable than THC. Overall, the tested bases were comparably effective in extracting cannabinoids from plant material. However, olive oil and Synderman bases exhibited the highest cannabinoid extraction efficiencies (approximately 70%) and the best storage stabilities in terms of the content of monitored compounds. The proposed preparation protocol is fast and easily implementable in pharmacies and medical facilities.
- Publikační typ
- časopisecké články MeSH
Alcohol binge drinking is common among adolescents and may challenge the signalling systems that process affective stimuli, including calcitonin gene-related peptide (CGRP) signalling. Here, we employed a rat model of adolescent binge drinking to evaluate reward-, social- and aversion-related behaviour, glucocorticoid output and CGRP levels in affect-related brain regions. As a potential rescue, the effect of the phytocannabinoid cannabidiol was explored. Adolescent male rats underwent the intermittent 20% alcohol two-bottle choice paradigm; at the binge day (BD) and the 24 h withdrawal day (WD), we assessed CGRP expression in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), amygdala, hypothalamus and brainstem; in addition, we evaluated sucrose preference, social motivation and drive, nociceptive response, and serum corticosterone levels. Cannabidiol (40 mg/kg, i.p.) was administered before each drinking session, and its effect was measured on the above-mentioned readouts. At BD and WD, rats displayed decreased CGRP expression in mPFC, NAc and amygdala; increased CGRP levels in the brainstem; increased response to rewarding- and nociceptive stimuli and decreased social drive; reduced serum corticosterone levels. Cannabidiol reduced alcohol consumption and preference; normalised the abnormal corticolimbic CGRP expression, and the reward and aversion-related hyper-responsivity, as well as glucocorticoid levels in alcohol binge-like drinking rats. Overall, CGRP can represent both a mediator and a target of alcohol binge-like drinking and provides a further piece in the intricate puzzle of alcohol-induced behavioural and neuroendocrine sequelae. CBD shows promising effects in limiting adolescent alcohol binge drinking and rebalancing the bio-behavioural abnormalities.
- MeSH
- ethanol MeSH
- glukokortikoidy MeSH
- hypothalamus MeSH
- kanabidiol * farmakologie MeSH
- kortikosteron MeSH
- krysa rodu rattus MeSH
- nárazové pití alkoholu * farmakoterapie metabolismus psychologie MeSH
- peptid spojený s genem pro kalcitonin metabolismus MeSH
- pití alkoholu škodlivé účinky metabolismus psychologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Introduction: An altered neurodevelopmental trajectory associated with prenatal exposure to ∆-9-tetrahydrocannabinol (THC) leads to aberrant cognitive processing through a perturbation in the effectors of hippocampal plasticity in the juvenile offspring. As adolescence presents a unique window of opportunity for "brain reprogramming", we aimed at assessing the role of the non-psychoactive phytocannabinoid cannabidiol (CBD) as a rescue strategy to temper prenatal THC-induced harm. Methods: To this aim, Wistar rats prenatally exposed to THC (2 mg/kg s.c.) or vehicle (gestational days 5-20) were tested for specific indexes of spatial and configural memory in the reinforcement-motivated Can test and in the aversion-driven Barnes maze test during adolescence. Markers of hippocampal excitatory plasticity and endocannabinoid signaling-NMDAR subunits NR1 and 2A-, mGluR5-, and their respective scaffold proteins PSD95- and Homer 1-; CB1R- and the neuromodulatory protein HINT1 mRNA levels were evaluated. CBD (40 mg/kg i.p.) was administered to the adolescent offspring before the cognitive tasks. Results: The present results show that prenatal THC impairs hippocampal memory functions and the underlying synaptic plasticity; CBD is able to mitigate cognitive impairment in both reinforcement- and aversion-related tasks and the neuroadaptation of hippocampal excitatory synapses and CB1R-related signaling. Discussion: While this research shows CBD potential in dampening prenatal THC-induced consequences, we point out the urgency to curb cannabis use during pregnancy in order to avoid detrimental bio-behavioral outcomes in the offspring.
- Publikační typ
- časopisecké články MeSH