spatial phylogenetics
Dotaz
Zobrazit nápovědu
It has long been assumed that cyanobacteria have, as with other free-living microorganisms, a ubiquitous occurrence. Neither the geographical dispersal barriers nor allopatric speciation has been taken into account. We endeavoured to examine the spatial and temporal patterns of global distribution within populations of the cyanobacterium Microcoleus vaginatus, originated from three continents, and to evaluate the role of dispersal barriers in the evolution of free-living cyanobacteria. Complex phylogeographical approach was applied to assess the dispersal and evolutionary patterns in the cyanobacterium Microcoleus vaginatus (Oscillatoriales). We compared the 16S rRNA and 16S-23S ITS sequences of strains which had originated from three continents (North America, Europe, and Asia). The spatial distribution was investigated using a phylogenetic tree, network, as well as principal coordinate analysis (PCoA). A temporal characterization was inferred using molecular clocks, calibrated from fossil DNA. Data analysis revealed broad genetic diversity within M. vaginatus. Based on the phylogenetic tree, network, and PCoA analysis, the strains isolated in Europe were spatially separated from those which originated from Asia and North America. A chronogram showed a temporal limitation of dispersal barriers on the continental scale. Dispersal barriers and allopatric speciation had an important role in the evolution of M. vaginatus. However, these dispersal barriers did not have a permanent character; therefore, the genetic flow among populations on a continental scale was only temporarily present. Furthermore, M. vaginatus is a recently evolved species, which has been going through substantial evolutionary changes.
Orchid mycorrhizal (OrM) fungi play a crucial role in the ontogeny of orchids, yet little is known about how the structure of OrM fungal communities varies with space and environmental factors. Previous studies suggest that within orchid patches, the distance to adult orchids may affect the abundance of OrM fungi. Many orchid species grow in species-rich temperate semi-natural grasslands, the persistence of which depends on moderate physical disturbances, such as grazing and mowing. The aim of this study was to test whether the diversity, structure and composition of OrM fungal community are influenced by the orchid patches and management intensity in semi-natural grasslands. We detected putative OrM fungi from 0 to 32 m away from the patches of host orchid species (Orchis militaris and Platanthera chlorantha) in 21 semi-natural calcareous grasslands using pyrosequencing. In addition, we assessed different ecological conditions in semi-natural grasslands but primarily focused on the effect of grazing intensity on OrM fungal communities in soil. We found that investigated orchid species were mostly associated with Ceratobasidiaceae and Tulasnellaceae and, to a lesser extent, with Sebacinales. Of all the examined factors, the intensity of grazing explained the largest proportion of variation in OrM fungal as well as total fungal community composition in soil. Spatial analyses showed limited evidence for spatial clustering of OrM fungi and their dependence on host orchids. Our results indicate that habitat management can shape OrM fungal communities, and the spatial distribution of these fungi appears to be weakly structured outside the orchid patches.
- MeSH
- Basidiomycota MeSH
- fylogeneze MeSH
- mykorhiza klasifikace MeSH
- Orchidaceae mikrobiologie MeSH
- pastviny * MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Estonsko MeSH
The potential for gene exchange across ploidy levels has long been recognized, but only a few studies have explored the rate of gene flow among different cytotypes. In addition, most of the existing knowledge comes from contact zones between diploids and tetraploids. The purpose of this paper was to investigate relationships between diploid and hexaploid individuals within the Aster amellus aggregate. A. amellus is known to occur in diploid and hexaploid cytotypes in Europe, with a complex contact zone in central Europe. Patterns of genetic diversity were investigated using seven microsatellite loci at three different spatial scales: (1) in the single known mixed-ploidy population; (2) in populations at the contact zone and (3) in a wider range of populations across Europe. The results show clear separation of the cytotypes at all three spatial scales. In addition, analysis of molecular variance strongly supported a model predicting a single origin of the hexaploids, with no or very limited gene flow between the cytotypes. Some hexaploid individuals found in the mixed-ploidy population, however, fell into the diploid cluster. This could suggest recurrent polyploid formation or occasional cross-pollination between cytotypes; however, there are strong post-zygotic breeding barriers between the two cytotypes, making the latter less plausible. Overall, the results suggest that the cytotypes could represent two cryptic species. Nevertheless, their formal separation is difficult as they cannot be distinguished morphologically, occupy very similar habitat conditions and have largely overlapping distribution ranges. These results show that polyploid complexes must be treated with caution as they can hide biological diversity and can have different adaptation potentials, evolving independently.
- MeSH
- analýza hlavních komponent MeSH
- Aster genetika MeSH
- Bayesova věta MeSH
- diploidie * MeSH
- fylogeografie MeSH
- genetická variace MeSH
- mikrosatelitní repetice MeSH
- modely genetické MeSH
- polyploidie * MeSH
- rostlinné geny MeSH
- tok genů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Although eukaryotic microorganisms are extremely numerous, diverse and essential to global ecosystem functioning, they are largely understudied by evolutionary biologists compared to multicellular macroscopic organisms. In particular, very little is known about the speciation mechanisms which may give rise to the diversity of microscopic eukaryotes. It was postulated that the enormous population sizes and ubiquitous distribution of these organisms could lead to a lack of population differentiation and therefore very low speciation rates. However, such assumptions have traditionally been based on morphospecies, which may not accurately reflect the true diversity, missing cryptic taxa. In this study, we aim to articulate the major diversification mechanisms leading to the contemporary molecular diversity by using a colonial freshwater flagellate, Synura sphagnicola, as an example. Phylogenetic analysis of five sequenced loci showed that S. sphagnicola differentiated into two morphologically distinct lineages approximately 15.4 million years ago, which further diverged into several evolutionarily recent haplotypes during the late Pleistocene. The most recent haplotypes are ecologically and biogeographically much more differentiated than the old lineages, presumably because of their persistent differentiation after the allopatric speciation events. Our study shows that in microbial eukaryotes, species diversification via the colonization of new geographical regions or ecological resources occurs much more readily than was previously thought. Consequently, divergence times of microorganisms in some lineages may be equivalent to the estimated times of speciation in plants and animals.
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- Chrysophyceae genetika růst a vývoj MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- haplotypy genetika MeSH
- mitochondriální DNA genetika MeSH
- sekvenční analýza DNA MeSH
- sladká voda MeSH
- vznik druhů (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The parasite communities of predatory fish can be species rich and diverse, making them effective models for studying the factors influencing temporal and spatial variation in these communities. Over a ten-year period an initial study was done on the metazoan parasite communities of Scomberomorus sierra (Jordan et Starks) from four locations on the south-central Pacific coast of Mexico. Twenty-four metazoan parasite taxa were identified from 674 S. sierra specimens: three species of Monogenea, eight Digenea, one Cestoda, one Acanthocephala, four Nematoda, five Copepoda, and two Isopoda. The parasite communities were characterised by high ectoparasite species richness, with monogeneans and some didymozoid species being numerically dominant. Community structure and species composition varied between locations, seasons and sampling years. Similarity between the component parasite communities was generally low, despite the occurrence of a distinctive set of host-specialist parasites. Interannual or local variations in some biotic and abiotic environmental factors are possible causes of the observed variations in the structure and species composition of the parasite community of S. sierra. Ecological factors were therefore considered to have more influence than phylogenetic aspects (host phylogeny) on parasite community structure.
- MeSH
- biodiverzita MeSH
- cizopasní červi * parazitologie MeSH
- Copepoda * fyziologie MeSH
- helmintózy zvířat * epidemiologie parazitologie MeSH
- interakce hostitele a parazita * MeSH
- nemoci ryb * epidemiologie parazitologie MeSH
- prevalence MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Mexiko MeSH
- Tichý oceán MeSH
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.
- MeSH
- analýza polymorfismu délky amplifikovaných restrikčních fragmentů MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- Gerbillinae klasifikace genetika MeSH
- haplotypy MeSH
- klimatické změny MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- populační genetika * MeSH
- prostorová analýza MeSH
- rozšíření zvířat MeSH
- sekvenční analýza DNA MeSH
- teoretické modely MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- jižní Afrika MeSH
BACKGROUND: Hedera (ivies) is one of the few temperate genera of the primarily tropical Asian Palmate group of the Araliaceae, which extends its range out of Asia to Europe and the Mediterranean basin. Phylogenetic and phylogeographic results suggested Asia as the center of origin and the western Mediterranean region as one of the secondary centers of diversification. The bird-dispersed fleshy fruits of ivies suggest frequent dispersal over long distances (e.g. Macaronesian archipelagos), although reducing the impact of geographic barriers to gene flow in mainland species. Genetic isolation associated with geographic barriers and independent polyploidization events have been postulated as the main driving forces of diversification. In this study we aim to evaluate past and present diversification patterns in Hedera within a geographic and temporal framework to clarify the biogeographic history of the genus. RESULTS: Phylogenetic (biogeographic, time divergence and diversification) and phylogeographic (coalescence) analyses using four DNA regions (nrITS, trnH-psbA, trnT-trnL, rpl32) revealed a complex spatial pattern of lineage divergence. Scarce geographic limitation to gene flow and limited diversification are observed during the early-mid Miocene, followed by a diversification rate increase related to geographic divergence from the Tortonian/Messinian. Genetic and palaeobotanical evidence points the origin of the Hedera clade in Asia, followed by a gradual E-W Asian extinction and the progressive E-W Mediterranean colonization. The temporal framework for the E Asia - W Mediterranean westward colonization herein reported is congruent with the fossil record. Subsequent range expansion in Europe and back colonization to Asia is also inferred. Uneven diversification among geographic areas occurred from the Tortonian/Messinian onwards with limited diversification in the newly colonized European and Asian regions. Eastern and western Mediterranean regions acted as refugia for Miocene and post-Miocene lineages, with a similar role as consecutive centers of centrifugal dispersal (including islands) and speciation. CONCLUSIONS: The Miocene Asian extinction and European survival of Hedera question the general pattern of Tertiary regional extinction of temperate angiosperms in Europe while they survived in Asia. The Tortonian/Messinian diversification increase of ivies in the Mediterranean challenges the idea that this aridity period was responsible for the extinction of the Mediterranean subtropical Tertiary flora. Differential responses of Hedera to geographic barriers throughout its evolutionary history, linked to spatial isolation related to historical geologic and climatic constraints may have shaped diversification of ivies in concert with recurrent polyploidy.
- MeSH
- biologická evoluce MeSH
- břečťan klasifikace genetika MeSH
- ekosystém MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- polyploidie MeSH
- vznik druhů (genetika) MeSH
- zkameněliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Asie MeSH
- Evropa MeSH
... Biological Implications of Rugged Fitness Landscapes, 69 Phylogenetic Implications of Rugged Landscapes ... ... Morphology, Maps, and the Spatial Ordering of Integrated Tissues, 537 -- Induction as a Basic Intercellular ... ... Tissues: Duplication, Regeneration, and Positional Continuity, 549 -- The Spontaneous Generation of Spatial ... ... Patterns in Drosophila melanogaster, 577 -- Pattern Formation in the Early Drosophila Embryo, 594 Spatial ...
1st ed. 709 s. : il.
- Klíčová slova
- Biologie, Evoluce, Fylogeneze,
- MeSH
- biologická evoluce MeSH
- biologie MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- původ života MeSH
Isolated glacial refugia have been documented in Central Europe for a number of taxa, but conclusive evidence for epigean aquatic species has remained elusive. Using molecular data (mitochondrial and nuclear markers), we compared the spatial patterns of lineage diversity of the widely distributed Gammarus fossarum species complex between two adjacent biogeographically and geomorphologically distinct Central European regions: the Bohemian Massif and the Western Carpathians. We investigated if the observed patterns of spatial diversity are more likely to stem from historical or present-day factors. Phylogenetic and phylogeographic analyses revealed eight phylogenetically diverse lineages: two exhibiting local signatures of recent demographic expansion inhabit both regions, while the other six display a relict distributional pattern and are found only in the Western Carpathians. Molecular dating indicates that these lineages are old and probably diverged throughout the Miocene (7-18Ma). Furthermore, their distribution does not seem to be constrained by the present boundaries of river catchments or topography. The contrasting spatial patterns of diversity observed between the two regions thus more likely result from historical rather than contemporaneous or recent factors. Our results indicate that despite the high latitude and proximity to the Pleistocene ice sheets, the Western Carpathians functioned as long-term glacial refugia for permanent freshwater fauna, allowing the uninterrupted survival of ancient lineages through millions of years of drastic climatic fluctuations.
- MeSH
- Amphipoda genetika fyziologie MeSH
- Bayesova věta MeSH
- časové faktory MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace MeSH
- mitochondrie genetika MeSH
- nadmořská výška MeSH
- podnebí * MeSH
- refugium * MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Many grasslands have disappeared over the last century as a result of anthropogenic land use intensification, while new patches are emerging through abandonment of arable fields. Here, we compared species (SD), functional (FD) and phylogenetic (PD) (alpha) diversity among 272 dry grassland patches of two age-classes: old and new, with the new patches being dry grasslands established on previous intensively managed fields during the last 30 years. We first compared SD, FD and PD, between patches of different age. Then, we performed generalized linear models to determine the influence of abiotic, present-day and historical landscape configuration variables on SD, FD and PD. By measuring abiotic variables, we explained the effect of environmental filtering on species diversity, whereas the present-day and historical landscape configuration variables were included to describe how the spatial and temporal configuration of the patches influence patterns of species. Finally, we applied partial regressions to explore the relative importance of abiotic, present-day and historical variables in explaining the diversity metrics and how this varies between patches of different ages. We found higher SD in the old compared to the new patches, but no changes in FD and PD. SD was mostly affected by abiotic and present-day landscape configuration variables in the new and the old patches, respectively. In the new patches, historical variables explained variation in the FD, while present-day variables explained the PD. In the old patches, historical variables accounted for most of the variation in both FD and PD. Our evidence suggests that the relative importance of assembly processes has changed over time, showing that environmental filtering and changes in the landscape configuration prevented the establishment of species in the new patches. However, the loss of species (i.e. SD) is not necessarily linked to a loss of functions and evolutionary potential.