virtual morphometrics
Dotaz
Zobrazit nápovědu
The most significant sexual differences in the human skull are located in the upper third of the face (the frontal bone), which is a useful research object, mainly in combination with virtual anthropology methods. However, the influence of biological relatedness on sexual dimorphism and frontal bone variability remains unknown. This study was directed at sexual difference description and sex classification using the form and shape of the external surface of the frontal bones from a genealogically documented Central European osteological sample (nineteenth to twentieth centuries). The study sample consisted of 47 cranial CT images of the adult members of several branches of one family group over 4 generations. Three-dimensional virtual models of the frontal bones were analyzed using geometric morphometrics and multidimensional statistics. Almost the entire external frontal surface was significantly different between males and females, especially in form. Significant differences were also found between this related sample and an unrelated one. Sex estimation of the biologically related individuals was performed using the classification models developed on a sample of unrelated individuals from the recent Czech population (Čechová et al. in Int J Legal Med 133: 1285 1294, 2019), with a result of 74.46% and 63.83% in form and shape, respectively. Failure of this classifier was caused by the existence of typical traits found in the biologically related sample different from the usual manifestation of sexual dimorphism. This can be explained as due to the increased degree of similarity and the reduction of variability in biologically related individuals. The results show the importance of testing previously published methods on genealogical data.
- MeSH
- čelní kost * diagnostické zobrazování anatomie a histologie MeSH
- dospělí MeSH
- lidé MeSH
- počítačová rentgenová tomografie MeSH
- pohlavní dimorfismus MeSH
- soudní antropologie * metody MeSH
- určení pohlaví podle kostry * metody MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Reptiles exhibit a large heterogeneity in teeth morphology. The main variability comprises the different tooth shape, the type of tooth attachment to the underlying bone, or the ability to replace the teeth. FINDINGS: Here, we provide full datasets of microtomography scans and 3D models of reptilian dentitions and skulls. We selected representative species for each of 9 reptilian families on the basis of their characteristic dental features. Because there are ≥4 different types of tooth-bone attachments, ranging from the mammalian-like thecodont attachment found in crocodilians to the simple acrodont implantation observed in some lizards, we aimed to evaluate species with different types of tooth-bone attachments. Moreover, another interesting feature varying in reptilian species is the complexity of tooth shape or the number of tooth generations, which can be associated with the type of tooth attachment to the jawbone. Therefore, selected model species also include animals with distinct tooth morphology along the jaw or different number of tooth generations. The development of tooth attachment and relationship of the tooth to the jaw can be further analysed in detail on a large collection of pre-hatching stages of chameleon. Next, we introduce different possibilities for how these datasets can be further used to study tooth-bone relationships or tooth morphology in 3D space. Moreover, these datasets can be valuable for additional morphological and morphometric analyses of reptilian skulls or their individually segmented skeletal elements. CONCLUSIONS: Our collection of microcomputed tomography scans can bring new insight into dental or skeletal research. The broad selection of reptilian species, together with their unique dental features and high quality of these scans including complete series of developmental stages of our model species and provide large opportunities for their reuse. Scans can be further used for virtual reality, 3D printing, or in education.
- MeSH
- dentice MeSH
- ještěři * anatomie a histologie MeSH
- lebka anatomie a histologie diagnostické zobrazování MeSH
- lidé MeSH
- rentgenová mikrotomografie MeSH
- savci MeSH
- zuby * anatomie a histologie diagnostické zobrazování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The skull, along with the pelvic bone, serves an important source of clues as to the sex of human skeletal remains. The frontal bone is one of the most significant sexually dimorphic structures employed in anthropological research, especially when studied by methods of virtual anthropology. For this reason, many new methods have been developed, but their utility for other populations remains to be verified. In the present study, we tested one such approach-the landmark-free method of Bulut et al. (2016) for quantifying sexually dimorphic differences in the shape of the frontal bone, developed using a sample of the Turkish population. Our study builds upon this methodology and tests its utility for the Czech population. We evaluated the shape of the male and female frontal bone using 3D morphometrics, comparing virtual models of frontal bones and corresponding software-generated spheres. To do so, we calculated the relative size of the frontal bone area deviating from the fitted sphere by less than 1 mm and used these data to estimate the sex of individuals. Using our sample of the Czech population, the method estimated the sex correctly in 72.8% of individuals. This success rate is about 5% lower than that achieved with the Turkish sample. This method is therefore not very suitable for estimating the sex of Czech individuals, especially considering the significantly greater success rates of other approaches.
- MeSH
- čelní kost anatomie a histologie diagnostické zobrazování MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- počítačová rentgenová tomografie MeSH
- počítačová simulace * MeSH
- počítačové zpracování obrazu MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- soudní antropologie MeSH
- support vector machine MeSH
- určení pohlaví podle kostry metody MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Biomechanical load and hormonal levels tended to change just like the soft and skeletal tissue of the elderly with age. Although aging in both sexes shared common traits, it was assumed that there would be a reduction of sexual dimorphism in aged individuals. The main goals of this study were (1) to evaluate age-related differences in cranial sexual dimorphism during senescence, (2) to determine age-related differences in female and male skulls separately, and (3) to compare skull senescence in Czech and French adult samples as discussed by Musilová et al. (Forensic Sci Int 269:70-77, 2016). The cranial surface was analyzed using coherent point drift-dense correspondence analysis. The study sample consisted of 245 CT scans of heads from recent Czech (83 males and 59 females) and French (52 males and 51 females) individuals. Virtual scans in the age range from 18 to 92 years were analyzed using geometric morphometrics. The cranial form was significantly greater in males in all age categories. After size normalization, sexual dimorphism of the frontal, occipital, and zygomatic regions tended to diminish in the elderly. Its development during aging was caused by morphological changes in both female and male skulls but secular changes must also be taken into account. The most notable aging changes were the widening of the neurocranium and the retrusion of the face, including the forehead, especially after the age of 60 in both sexes. Sexual dimorphism was similar between the Czech and French samples but its age-related differences were partially different because of the population specificity. Cranial senescence was found to degrade the accuracy of sex classification (92-94%) in the range of 2-3%.
- MeSH
- dospělí MeSH
- lebka anatomie a histologie diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- počítačová rentgenová tomografie MeSH
- pohlavní dimorfismus * MeSH
- remodelace kosti fyziologie MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- určení pohlaví podle kostry * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Francie MeSH
The growing availability of virtual cranial endocasts of extinct and extant vertebrates has fueled the quest for endocranial characters that discriminate between phylogenetic groups and resolve their neural significances. We used geometric morphometrics to compare a phylogenetically and ecologically comprehensive data set of archosaurian endocasts along the deep evolutionary history of modern birds and found that this lineage experienced progressive elevation of encephalisation through several chapters of increased endocranial doming that we demonstrate to result from progenetic developments. Elevated encephalisation associated with progressive size reduction within Maniraptoriformes was secondarily exapted for flight by stem avialans. Within Mesozoic Avialae, endocranial doming increased in at least some Ornithurae, yet remained relatively modest in early Neornithes. During the Paleogene, volant non-neoavian birds retained ancestral levels of endocast doming where a broad neoavian niche diversification experienced heterochronic brain shape radiation, as did non-volant Palaeognathae. We infer comparable developments underlying the establishment of pterosaurian brain shapes.
- MeSH
- aligátoři a krokodýli anatomie a histologie genetika MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- lebka anatomie a histologie MeSH
- let zvířat MeSH
- mozek anatomie a histologie růst a vývoj MeSH
- ptáci anatomie a histologie genetika MeSH
- zkameněliny anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sex estimation is a task of utmost importance in forensic anthropology and bioarcheology. Along with the pelvic bone, the skull is the most important source of sexual dimorphism. On the human skull, the upper third of the face (i.e., the frontal bone) is one of the most significant sexually dimorphic structures useful in anthropological research, especially when studied by methods of virtual anthropology. This study was focused on sex estimation using the form and shape of the external surface of the frontal bone with or without the inclusion of its sinuses. The study sample consisted of 103 cranial CT images from a contemporary Czech population. Three-dimensional virtual models of the frontal bones and sinuses were analyzed using geometric morphometrics and multidimensional statistics: coherent point drift-dense correspondence analysis (CPD-DCA), principal component analysis (PCA), and support vector machine (SVM). The whole external frontal surface was significantly different between males and females both in form and shape. The greatest total success rate of sex estimation based on form was 93.2%, which decreased to 86.41% after crossvalidation, and this model identified females and males with the same accuracy. The best estimation based on shape reached a success rate of 91.26%, with slightly greater accuracy for females. After crossvalidation, however, the success rate decreased to 83.49%. The differences between sexes were significant also in the volume and surface of the frontal sinuses, but the sex estimation had only 64.07% accuracy after crossvalidation. Simultaneous use of the shape of the frontal surface and the frontal sinuses improved the total success rate to 98.05%, which decreased to 84.46% after crossvalidation.
- MeSH
- čelní kost anatomie a histologie diagnostické zobrazování MeSH
- lebka anatomie a histologie diagnostické zobrazování MeSH
- lidé MeSH
- pohlavní dimorfismus MeSH
- soudní antropologie metody MeSH
- určení pohlaví podle kostry metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Assessing sex and population affinity is an important part of the process of biologically identifying unknown human remains, and the skull is usually one of the best structures for assessing both these components of the biological profile. Population affinity is known to be a hugely important variable when estimating sex because the manifestation of sexually dimorphic traits, body size or social and behavioural habits differs across populations. Therefore, for forensic purposes, the estimation of ancestry is a necessary step in the identification of bone remains. The present study improves on the results of a previously developed virtual method using the exocranial surface for sex estimation and assessing population affinity. The ability to assess these components of the biological profile was successfully tested on 208 individuals from two recent European populations. The original classifier was based on geometric morphometric analyses (CPD-DCA, PCA, SVM) and was able to assess the sex of individuals belonging to one French population with an accuracy exceeding 90 % Musilová et al. [1]. To improve the reliability of the method, the Czech population sample was added to the dataset, yielding the highest accuracy of 96.2 %; using the combined dataset, the reliability of the method was 91.8 %. Secondly, we used the same method utilizing inter-population differences to classify individuals based on the shape of the skull. The greatest accuracy rate was 92.8 %, which makes our method a promising tool for sex estimation and assessing population affinity.
- MeSH
- analýza hlavních komponent MeSH
- běloši MeSH
- dospělí MeSH
- lebka diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- reprodukovatelnost výsledků MeSH
- senioři MeSH
- soudní antropologie MeSH
- strojové učení MeSH
- support vector machine MeSH
- určení pohlaví podle kostry metody MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Francie MeSH
Quantification of the structure and composition of biomaterials using micro-CT requires image segmentation due to the low contrast and overlapping radioopacity of biological materials. The amount of bias introduced by segmentation procedures is generally unknown. We aim to develop software that generates three-dimensional models of fibrous and porous structures with known volumes, surfaces, lengths, and object counts in fibrous materials and to provide a software tool that calibrates quantitative micro-CT assessments. Virtual image stacks were generated using the newly developed software TeIGen, enabling the simulation of micro-CT scans of unconnected tubes, connected tubes, and porosities. A realistic noise generator was incorporated. Forty image stacks were evaluated using micro-CT, and the error between the true known and estimated data was quantified. Starting with geometric primitives, the error of the numerical estimation of surfaces and volumes was eliminated, thereby enabling the quantification of volumes and surfaces of colliding objects. Analysis of the sensitivity of the thresholding upon parameters of generated testing image sets revealed the effects of decreasing resolution and increasing noise on the accuracy of the micro-CT quantification. The size of the error increased with decreasing resolution when the voxel size exceeded 1/10 of the typical object size, which simulated the effect of the smallest details that could still be reliably quantified. Open-source software for calibrating quantitative micro-CT assessments by producing and saving virtually generated image data sets with known morphometric data was made freely available to researchers involved in morphometry of three-dimensional fibrillar and porous structures in micro-CT scans.
Determination of sex is one of the most important and challenging disciplines in biological anthropology. Creating a robust tool for sexing crania is crucial for forensic anthropology, especially in this period of migration, travel, and globalization, when different populations are mixed together in one region. Many different approaches to sex estimation using the skull have been published; however, population specificity and oscillation of variable sexual dimorphism typically reduces their effectiveness. The aim of this study was to create a robust classifier using virtual anthropology without the use of a CT scanner. The entire cranial surface was analyzed using coherent point drift-dense correspondence analysis and classification was performed using a support vector machine with a radial kernel, minimizing subjective error. The study sample consisted of 103 CT scans of a recent southern French population. Virtual scans of 52 males and 51 females (age from 18 to 92) were analyzed using 3D software systems (Rapidform, Avizo, Morphome3cs) and innovative approaches in geometric morphometrics. Leave-one-out crossvalidation was also applied. Sex differences in shape and form were displayed by colour scale maps. The whole cranial surface was significantly different between males and females in size (form). Sexual dimorphism was significantly lower in senile skulls. The most exclusive areas were the supraorbital region, orbits, cheek bones, nasal apertures, mastoids, and external occipital protuberances. The method provided a high level of classification accuracy (90.3%) in sexing male and female skulls and is a valuable tool for sex determination.
- MeSH
- dospělí MeSH
- lebka anatomie a histologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- soudní antropologie MeSH
- support vector machine MeSH
- určení pohlaví podle kostry metody MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Francie MeSH
BACKGROUND: A new method of early neonatal cheiloplasty has recently been employed on patients having complete unilateral cleft lip and palate (cUCLP). We aimed to investigate (1) their detailed palatal morphology before surgery and growth during the 10 months after neonatal cheiloplasty, (2) the growth of eight dimensions of the maxilla in these patients, (3) the development of these dimensions compared with published data on noncleft controls and on cUCLP patients operated using later operation protocol (LOP; 6 months of age). METHODS: Sixty-six virtual dental models of 33 longitudinally evaluated cUCLP patients were analysed using metric analysis, a dense correspondence model, and multivariate statistics. We compared the palatal surfaces before neonatal cheiloplasty (mean age, 4 days) and before palatoplasty (mean age, 10 months). RESULTS: The palatal form variability of 10-month-old children was considerably reduced during the observed period thanks to their undisturbed growth, that is, the palate underwent the same growth changes following neonatal cheiloplasty. A detailed colour-coded map identified the most marked growth at the anterior and posterior ends of both segments. The maxilla of cUCLP patients after neonatal cheiloplasty had a growth tendency similar to noncleft controls (unlike LOP). CONCLUSIONS: Both methodological approaches showed that early neonatal cheiloplasty in cUCLP patients did not prevent forward growth of the upper jaw segments and did not reduce either the length or width of the maxilla during the first 10 months of life.
- MeSH
- algoritmy MeSH
- antropometrie metody MeSH
- kojenec MeSH
- lidé MeSH
- maxila růst a vývoj MeSH
- novorozenec MeSH
- patro růst a vývoj MeSH
- rozštěp patra chirurgie MeSH
- rozštěp rtu chirurgie MeSH
- velikost orgánu MeSH
- zákroky plastické chirurgie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH