We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
- Klíčová slova
- DEAH-box RNA helicase, DHX15, G-patch, gRNA packaging, retrovirus,
- MeSH
- buněčné jádro metabolismus virologie MeSH
- DEAD-box RNA-helikasy metabolismus genetika MeSH
- genom virový MeSH
- HEK293 buňky MeSH
- lidé MeSH
- Masonův-Pfizerův opičí virus * genetika metabolismus fyziologie MeSH
- replikace viru genetika fyziologie MeSH
- RNA virová * metabolismus genetika MeSH
- RNA-helikasy metabolismus genetika MeSH
- sestavení viru * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DEAD-box RNA-helikasy MeSH
- DHX15 protein, human MeSH Prohlížeč
- RNA virová * MeSH
- RNA-helikasy MeSH
Improving the anticancer efficacy of chemotherapeutic drugs and photosensitizers requires innovative multifunctional nanoplatforms. This study introduces a chemo- and phototherapeutic drug delivery system (DDS) based on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs), both PEGylated and non-PEGylated, with a mean size of 200 ± 75 nm. Colchicine (Colch) and purpurin18 (P18) were co-encapsulated into these NPs, and their in vitro drug release profiles were investigated. The anticancer potential of these systems was evaluated across various cell lines (i.e., CaCo-2, PC-3, MCF-7, and MRC-5 cells), demonstrating enhanced NP uptake by cancer cells compared to free drugs. Co-administration of Colch and P18 in 2D and 3D cell line models exhibited a synergistic effect, harnessing both chemotherapeutic and photodynamic effects, leading to higher cancer cell elimination efficacy. This newly developed multifunctional DDS presents a promising platform for combined chemo- and photodynamic therapy in cancer treatment.
- Klíčová slova
- Cancer cell spheroids, Colchicine, Drug delivery system, Multifunctional nanoplatform, PEGylated PLGA nanoparticles, PLGA nanoparticles, Purpurin 18,
- MeSH
- buněčné sféroidy účinky léků MeSH
- fotochemoterapie metody MeSH
- fotosenzibilizující látky aplikace a dávkování chemie farmakologie MeSH
- kolchicin * aplikace a dávkování MeSH
- kopolymer kyseliny glykolové a mléčné * chemie MeSH
- lékové transportní systémy metody MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie MeSH
- nanočástice aplikace a dávkování MeSH
- nosiče léků * chemie MeSH
- protinádorové látky aplikace a dávkování chemie farmakologie MeSH
- uvolňování léčiv * MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosenzibilizující látky MeSH
- kolchicin * MeSH
- kopolymer kyseliny glykolové a mléčné * MeSH
- nosiče léků * MeSH
- protinádorové látky MeSH
As predictive motor control is an important index of neuromotor development and maturation, we developed two touchscreen tablet-based tests of this function. Our aim was to investigate the reliability and validity of both a rapid manual interception test and a pursuit tracking test, using a sample of 124 children (62 boys and 62 girls) from two age groups (7-8-year-oldss and 9-10-year-olds). Participants performed both tablet tests with a stylus (sample rate 100 Hz) with both a visible and a temporarily invisible moving target. Confirmatory factor analyses and omega coefficients showed that both tests were univariate methods that provided a reliable assessment of the latent factor related to predictive visuomotor control. As would be expected, compared to younger children, older children performed better on both manual interception and pursuit tracking. The correlations between the latent factors of the two tests at 95% confidence intervals (-.276, -.608) suggested shared variance. Thus, the touchscreen-tablet based tests of rapid manual interception and manual pursuit tracking appear psychometrically suitable for assessing the neuromotor ability of predictive control in 7-10-year-old children.
- Klíčová slova
- children, interceptive action, motor control, pursuit tracking, tablet computer, visuomotor skills,
- MeSH
- dítě MeSH
- faktorová analýza statistická MeSH
- lidé MeSH
- mladiství MeSH
- reprodukovatelnost výsledků * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The authors wish to make the following corrections to this paper [...].
- Publikační typ
- tisková chyba MeSH
Approximately one third of children with steroid-resistant nephrotic syndrome (SRNS) carry pathogenic variants in one of the many associated genes. The WT1 gene coding for the WT1 transcription factor is among the most frequently affected genes. Cases from the Czech national SRNS database were sequenced for exons 8 and 9 of the WT1 gene. Eight distinct exonic WT1 variants in nine children were found. Three children presented with isolated SRNS, while the other six manifested with additional features. To analyze the impact of WT1 genetic variants, wild type and mutant WT1 proteins were prepared and the DNA-binding affinity of these proteins to the target EGR1 sequence was measured by microscale thermophoresis. Three WT1 mutants showed significantly decreased DNA-binding affinity (p.Arg439Pro, p.His450Arg and p.Arg463Ter), another three mutants showed significantly increased binding affinity (p.Gln447Pro, p.Asp469Asn and p.His474Arg), and the two remaining mutants (p.Cys433Tyr and p.Arg467Trp) showed no change of DNA-binding affinity. The protein products of WT1 pathogenic variants had variable DNA-binding affinity, and no clear correlation with the clinical symptoms of the patients. Further research is needed to clarify the mechanisms of action of the distinct WT1 mutants; this could potentially lead to individualized treatment of a so far unfavourable disease.
- MeSH
- dítě MeSH
- DNA terapeutické užití MeSH
- léková rezistence MeSH
- lidé MeSH
- mutace MeSH
- nefrotický syndrom * farmakoterapie genetika metabolismus MeSH
- proteiny WT1 * genetika metabolismus MeSH
- steroidy farmakologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- proteiny WT1 * MeSH
- steroidy MeSH
- WT1 protein, human MeSH Prohlížeč
The emergence of antibiotic resistance in opportunistic pathogens represents a huge problem, the solution for which may be a treatment with a combination of multiple antimicrobial agents. Sodium salt of cobalt bis-dicarbollide (COSAN.Na) is one of the very stable, low-toxic, amphiphilic boron-rich sandwich complex heteroboranes. This compound has a wide range of potential applications in the biological sciences due to its antitumor, anti-HIV-1, antimicrobial and antibiofilm activity. Our study confirmed the ability of COSAN.Na (in the concentration range 0.2-2.48 µg/mL) to enhance tetracycline, erythromycin, and vancomycin action towards Staphylococcus epidermidis planktonic growth with an additive or synergistic effect (e.g., the combination of 1.24 µg/mL COSAN.Na and 6.5 µg/mL TET). The effective inhibitory concentration of antibiotics was reduced up to tenfold most efficiently in the case of tetracycline (from 65 to 6.5 µg/mL). In addition, strong effect of COSAN.Na on disruption of the cell envelopes was determined using propidium iodide uptake measurement and further confirmed by transmission electron microscopy. The combination of amphiphilic COSAN.Na with antibiotics can therefore be considered a promising way to overcome antibiotic resistance in Gram-positive cocci.
- Klíčová slova
- Gram-positive bacterium, additive effect, antibiotics, antimicrobial activity, carborane, erythromycin, metallacarboranes, synergistic effect, tetracycline, vancomycin,
- Publikační typ
- časopisecké články MeSH
Fullerene derivatives with hydrophilic substituents have been shown to exhibit a range of biological activities, including antiviral ones. For a long time, the anti-HIV activity of fullerene derivatives was believed to be due to their binding into the hydrophobic pocket of HIV-1 protease, thereby blocking its activity. Recent work, however, brought new evidence of a novel, protease-independent mechanism of fullerene derivatives' action. We studied in more detail the mechanism of the anti-HIV-1 activity of N,N-dimethyl[70]fulleropyrrolidinium iodide fullerene derivatives. By using a combination of in vitro and cell-based approaches, we showed that these C70 derivatives inhibited neither HIV-1 protease nor HIV-1 maturation. Instead, our data indicate effects of fullerene C70 derivatives on viral genomic RNA packaging and HIV-1 cDNA synthesis during reverse transcription-without impairing reverse transcriptase activity though. Molecularly, this could be explained by a strong binding affinity of these fullerene derivatives to HIV-1 nucleocapsid domain, preventing its proper interaction with viral genomic RNA, thereby blocking reverse transcription and HIV-1 infectivity. Moreover, the fullerene derivatives' oxidative activity and fluorescence quenching, which could be one of the reasons for the inconsistency among reported anti-HIV-1 mechanisms, are discussed herein.
- Klíčová slova
- HIV-1, RNA packaging, fullerene, inhibition, nucleocapsid,
- MeSH
- fullereny metabolismus farmakologie MeSH
- genom virový účinky léků MeSH
- genové produkty gag - virus lidské imunodeficience metabolismus MeSH
- HEK293 buňky MeSH
- HIV-1 účinky léků genetika metabolismus fyziologie MeSH
- látky proti HIV metabolismus farmakologie MeSH
- lidé MeSH
- nukleokapsida - proteiny metabolismus MeSH
- reverzní transkripce MeSH
- RNA virová metabolismus MeSH
- svlékání virového obalu účinky léků MeSH
- vazba proteinů MeSH
- virion metabolismus MeSH
- zabalení virového genomu účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullereny MeSH
- genové produkty gag - virus lidské imunodeficience MeSH
- látky proti HIV MeSH
- nukleokapsida - proteiny MeSH
- RNA virová MeSH
Metabolic transformation of cancer cells leads to the accumulation of lactate and significant acidification in the tumor microenvironment. Both lactate and acidosis have a well-documented impact on cancer progression and negative patient prognosis. Here, we report that cancer cells adapted to acidosis are significantly more sensitive to oxidative damage induced by hydrogen peroxide, high-dose ascorbate, and photodynamic therapy. Higher lactate concentrations abrogate the sensitization. Mechanistically, acidosis leads to a drop in antioxidant capacity caused by a compromised supply of nicotinamide adenine dinucleotide phosphate (NADPH) derived from glucose metabolism. However, lactate metabolism in the Krebs cycle restores NADPH supply and antioxidant capacity. CPI-613 (devimistat), an anticancer drug candidate, selectively eradicates the cells adapted to acidosis through inhibition of the Krebs cycle and induction of oxidative stress while completely abrogating the protective effect of lactate. Simultaneous cell treatment with tetracycline, an inhibitor of the mitochondrial proteosynthesis, further enhances the cytotoxic effect of CPI-613 under acidosis and in tumor spheroids. While there have been numerous attempts to treat cancer by neutralizing the pH of the tumor microenvironment, we alternatively suggest considering tumor acidosis as the Achilles' heel of cancer as it enables selective therapeutic induction of lethal oxidative stress.
- Klíčová slova
- CPI-613, acidosis, bioenergetics, cancer, lactate, mitochondria, photodynamic therapy, tetracycline, therapy, tumor microenvironment,
- MeSH
- acidóza patofyziologie MeSH
- citrátový cyklus účinky léků MeSH
- energetický metabolismus MeSH
- fyziologická adaptace MeSH
- glukosa metabolismus MeSH
- glykolýza MeSH
- kapryláty farmakologie MeSH
- koncentrace vodíkových iontů MeSH
- kyselina mléčná metabolismus MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus patologie MeSH
- nádorové buňky kultivované MeSH
- nádorové mikroprostředí * MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- oxidační stres MeSH
- protinádorové látky farmakologie MeSH
- sulfidy farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- devimistat MeSH Prohlížeč
- glukosa MeSH
- kapryláty MeSH
- kyselina mléčná MeSH
- protinádorové látky MeSH
- sulfidy MeSH
Due to their bioavailability, glycosylated carotenoids may have interesting biological effects. Sioxanthin, as a representative of this type of carotenoid, has been identified in marine actinomycetes of the genus Salinispora. This study evaluates, for the first time, the effect of cultivation temperature (T) and light intensity (LI) on the total cellular carotenoid content (TC), antioxidant activity (AA) and sioxanthin content (SX) of a crude extract (CE) from Salinispora tropica biomass in its vegetative state. Treatment-related differences in TC and SX values were statistically significantly and positively affected by T and LI, while AA was most significantly affected by T. In the S. tropica CE, TC correlated well (R2 = 0.823) with SX and somewhat less with AA (R2 = 0.777). A correlation between AA and SX was found to be less significant (R2 = 0.731). The most significant protective effect against oxidative stress was identified in the CE extracted from S. tropica biomass grown at the highest T and LI (CE-C), as was demonstrated using LNCaP and KYSE-30 human cell lines. The CE showed no cytotoxicity against LNCaP and KYSE-30 cell lines.
- Klíčová slova
- Salinispora tropica, antioxidant activity, sioxanthin, total cellular carotenoids,
- MeSH
- antioxidancia chemie farmakologie MeSH
- bifenylové sloučeniny MeSH
- biomasa MeSH
- buněčné linie účinky léků MeSH
- karotenoidy metabolismus farmakologie MeSH
- komplexní směsi MeSH
- lidé MeSH
- Micromonosporaceae * MeSH
- mycelium MeSH
- oxidační stres účinky léků MeSH
- pikráty MeSH
- světlo MeSH
- teplota MeSH
- vodní organismy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,1-diphenyl-2-picrylhydrazyl MeSH Prohlížeč
- antioxidancia MeSH
- bifenylové sloučeniny MeSH
- karotenoidy MeSH
- komplexní směsi MeSH
- pikráty MeSH
- sioxanthin MeSH Prohlížeč
Betulinic acid (BA) is a potent triterpene, which has shown promising potential in cancer and HIV-1 treatment. Here, we report a synthesis and biological evaluation of 17 new compounds, including BODIPY labelled analogues derived from BA. The analogues terminated by amino moiety showed increased cytotoxicity (e.g., BA had on CCRF-CEM IC50 > 50 μM, amine 3 IC50 0.21 and amine 14 IC50 0.29). The cell-cycle arrest was evaluated and did not show general features for all the tested compounds. A fluorescence microscopy study of six derivatives revealed that only 4 and 6 were detected in living cells. These compounds were colocalized with the endoplasmic reticulum and mitochondria, indicating possible targets in these organelles. The study of anti-HIV-1 activity showed that 8, 10, 16, 17 and 18 have had IC50i > 10 μM. Only completely processed p24 CA was identified in the viruses formed in the presence of compounds 4 and 12. In the cases of 2, 8, 9, 10, 16, 17 and 18, we identified not fully processed p24 CA and p25 CA-SP1 protein. This observation suggests a similar mechanism of inhibition as described for bevirimat.
- Klíčová slova
- BODIPY, betulinic acid, bevirimat, cancer, cell-cycle, cytotoxicity, fluorescent microscopy, maturation inhibitor,
- Publikační typ
- časopisecké články MeSH