Entomopathogenic nematodes (EPNs) are biological control agents that naturally kill insect pests, providing an eco-friendly alternative to chemical pesticides. Despite extensive research, the mechanisms behind the recovery process, where infective juveniles (IJs) transition to a parasitic state upon contact with the host, remain unclear. This study investigates the stimulatory effect of insect-derived materials on the recovery of Heterorhabditis bacteriophora IJs. Three materials from Galleria mellonella larvae-bioactive homogenates from live and frozen larvae, and heat-inactivated homogenate-were tested, along with non-host stimuli including filtered water and phosphate-buffered saline (PBS). While none of the materials induced complete recovery of IJs, all triggered the release of excreted/secreted products (ESPs), with consistent protein concentrations across treatments. However, mass spectrometry revealed significant differences in ESP protein composition. IJs exposed to PBS released the highest number of proteins, while bioactive homogenates induced the fewest. Proteins linked to host-parasite interactions, such as alpha-2-macroglobulins and trypsin inhibitor-like proteins, were more abundant in ESPs following exposure to insect-derived materials and PBS. Interestingly, nematodes exposed to water released a substantial number of proteins, comparable to stimulation by heat-inactivated homogenates, though their protein profiles were distinct, reflecting stress responses in the former and host-parasite interaction-related proteins in the latter. Our findings demonstrate that both host-derived and non-biological stimuli can trigger IJs recovery and ESPs release, underscoring the complexity of host-nematode interactions. These results provide novel insights into molecular mechanisms underlying H. bacteriophora parasitism and may contribute to optimizing biocontrol strategies through a better understanding of nematode activation and released ESPs.
- MeSH
- biologická kontrola škůdců MeSH
- hmyz MeSH
- interakce hostitele a parazita * MeSH
- larva MeSH
- můry parazitologie MeSH
- proteiny červů metabolismus MeSH
- Rhabditida fyziologie MeSH
- Rhabditoidea fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny červů MeSH
Amphotericin B (AmB) is one of the most effective antifungal drugs, with a strong, dose-dependent activity against most Candida and Aspergillus species responsible for life-threatening infections. However, AmB is severely toxic, which hinders its broad use. In this proof-of-concept study, we demonstrate that prodrugging AmB considerably decreases AmB toxicity without affecting its fungicidal activity. For this purpose, we modified the AmB structure by attaching a designer phosphate promoiety, thereby switching off its mode of action and preventing its toxic effects. The original fungicidal activity of AmB was then restored upon prodrug activation by host plasma enzymes. These AmB prodrugs showed a safer toxicity profile than commercial AmB deoxycholate in Candida and Aspergillus species and significantly prolonged larval survival of infected Galleria mellonella larvae. Based on these findings, prodrugging toxic antifungals may be a viable strategy for broadening the antifungal arsenal, opening up opportunities for targeted prodrug design.
- Klíčová slova
- Amphotericin, Antifungal, Aspergillus fumigatus, Candida albicans, Fungal infection, Galleria mellonella, Prodrugs, Toxicity,
- MeSH
- amfotericin B * farmakologie MeSH
- antifungální látky * farmakologie chemie chemická syntéza MeSH
- Aspergillus účinky léků MeSH
- Candida účinky léků MeSH
- larva účinky léků MeSH
- mikrobiální testy citlivosti * MeSH
- molekulární struktura MeSH
- můry účinky léků MeSH
- prekurzory léčiv * farmakologie chemie chemická syntéza MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amfotericin B * MeSH
- antifungální látky * MeSH
- prekurzory léčiv * MeSH
Sex chromosomes can expand through fusion with autosomes, thereby acquiring unique evolutionary patterns. In butterflies and moths (Lepidoptera), these sex chromosome-autosome (SA) fusions occur relatively frequently, suggesting possible evolutionary advantages. Here, we investigated how SA fusion affects chromosome features and molecular evolution in leafroller moths (Lepidoptera: Tortricidae). Phylogenomic analysis showed that Tortricidae diverged ∼124 million years ago, accompanied by an SA fusion between the Merian elements M(20 + 17) and MZ. In contrast to partial autosomal fusions, the fused neo-Z Chromosome developed a hierarchical architecture, in which the three elements exhibit heterogeneous sequence features and evolutionary patterns. Specifically, the M17 part had a distinct base composition and chromatin domains. Unlike M20 and MZ, M17 was expressed at the same levels as autosomes in both sexes, compensating for the lost gene dosage in females. Concurrently, the SA fusion drove M17 as an evolutionary hotspot, accelerating the evolution of several genes related to ecological adaptation (e.g., ABCCs) and facilitating the divergence of closely related species, whereas the undercompensated M20 did not show such an effect. Thus, accelerated evolution under a novel pattern of dosage compensation may have favored the adaptive radiation of this group. This study demonstrates the association between a karyotype variant and adaptive evolution and explains the recurrent SA fusion in the Lepidoptera.
- MeSH
- chromozomy hmyzu genetika MeSH
- fylogeneze * MeSH
- fyziologická adaptace genetika MeSH
- molekulární evoluce * MeSH
- můry * genetika klasifikace MeSH
- pohlavní chromozomy * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The endosymbiotic relationship between Wolbachia bacteria and insects has been of interest for many years due to their diverse types of host reproductive phenotypic manipulation and potential role in the host's evolutionary history and population dynamics. Even though infection rates are high in Lepidoptera and specifically in butterflies, and reproductive manipulation is present in these taxa, less attention has been given to understanding how Wolbachia is acquired and maintained in their natural populations, across and within species having continental geographical distributions. RESULTS: We used whole genome sequencing data to investigate the phylogenetics, demographic history, and infection rate dynamics of Wolbachia in four species of the Spicauda genus of skipper butterflies (Lepidoptera: Hesperiidae), a taxon that presents sympatric and often syntopic distribution, with drastic variability in species abundance in the Neotropical region. We show that infection is maintained by high turnover rates driven mainly by pervasive horizontal transmissions, while also presenting novel cases of double infection by distantly related supergroups of Wolbachia in S. simplicius. CONCLUSIONS: Our results suggest that Wolbachia population dynamics is host species-specific, with genetic cohesiveness across wide geographical distributions. We demonstrate that low coverage whole genome sequencing data can be used for an exhaustive assessment of Wolbachia infection in natural populations of butterflies, as well as its dynamics in closely related host species. This ultimately leads to a better understanding of the endosymbiotic population dynamics of Wolbachia and its effects on the host's biology and evolution.
- Klíčová slova
- Wolbachia, Double infection, Hesperiidae, Historical demography, Phylogenetics, Population dynamics, Skipper butterflies,
- MeSH
- fylogeneze * MeSH
- genom bakteriální genetika MeSH
- motýli * mikrobiologie MeSH
- sekvenování celého genomu * MeSH
- symbióza * MeSH
- Wolbachia * genetika klasifikace izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A large number of geometrid moths was collected by the first author in Iraqi Kurdistan including several undescribed species and subspecies. In this paper we describe three new geometrid taxa: Idaea medianocturna walaila ssp. nov., Lulavia mahwii sp. nov. and Protorhoe drechseli nebuloides ssp. nov. We present differential diagnoses and images of adult moths and genitalia.
- MeSH
- anatomické struktury zvířat anatomie a histologie růst a vývoj MeSH
- můry * anatomie a histologie klasifikace MeSH
- rozšíření zvířat * MeSH
- velikost orgánu MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Irák MeSH
Satellite DNAs (satDNAs) are abundant components of eukaryotic genomes, playing pivotal roles in chromosomal organization, genome stability, and evolution. Here, we combined cytogenetic and genomic methods to characterize the satDNAs in the genomes of Leptidea butterflies. Leptidea is characterized by the presence of a high heterochromatin content, large genomes, and extensive chromosomal reshuffling as well as the occurrence of cryptic species. We show that, in contrast to other Lepidoptera, satDNAs constitute a considerable proportion of Leptidea genomes, ranging between 4.11% and 11.05%. This amplification of satDNAs, together with the hyperactivity of transposable elements, contributes to the substantial genome expansion in Leptidea. Using chromosomal mapping, we show that, particularly LepSat01-100 and LepSat03-167 satDNAs, are preferentially localized in heterochromatin exhibiting variable distribution that may have contributed to the highly diverse karyotypes within the genus. The satDNAs also exhibit W-chromosome accumulation, suggesting their involvement in sex chromosome evolution. Our results provide insights into the dynamics of satDNAs in Lepidoptera genomes and highlight their role in genome expansion and chromosomal organization, which could influence the speciation process. The high proportion of repetitive DNAs in the genomes of Leptidea underscores the complex evolutionary dynamics revealing the interplay between repetitive DNAs and genomic architecture in the genus.
- Klíčová slova
- Lepidoptera, chromosome mapping, cryptic species, genome evolution, repetitive DNA,
- MeSH
- fylogeneze MeSH
- genom hmyzu * MeSH
- heterochromatin genetika MeSH
- karyotyp * MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- motýli * genetika MeSH
- satelitní DNA * genetika MeSH
- transpozibilní elementy DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- heterochromatin MeSH
- satelitní DNA * MeSH
- transpozibilní elementy DNA MeSH
Repetitive elements can cause large-scale chromosomal rearrangements, for example through ectopic recombination, potentially promoting reproductive isolation and speciation. Species with holocentric chromosomes, that lack a localized centromere, might be more likely to retain chromosomal rearrangements that lead to karyotype changes such as fusions and fissions. This is because chromosome segregation during cell division should be less affected than in organisms with a localized centromere. The relationships between repetitive elements and chromosomal rearrangements and how they may translate to patterns of speciation in holocentric organisms are though poorly understood. Here, we use a reference-free approach based on low-coverage short-read sequencing data to characterize the repeat landscape of two independently evolved holocentric groups: Erebia butterflies and Carex sedges. We consider both micro- and macro-evolutionary scales to investigate the repeat landscape differentiation between Erebia populations and the association between repeats and karyotype changes in a phylogenetic framework for both Erebia and Carex. At a micro-evolutionary scale, we found population differentiation in repeat landscape that increases with overall intraspecific genetic differentiation among four Erebia species. At a macro-evolutionary scale, we found indications for an association between repetitive elements and karyotype changes along both Erebia and Carex phylogenies. Altogether, our results suggest that repetitive elements are associated with the level of population differentiation and chromosomal rearrangements in holocentric clades and therefore likely play a role in adaptation and potentially species diversification.
- Klíčová slova
- Carex, Erebia, Lepidoptera, speciation, transposable elements,
- MeSH
- biologická evoluce MeSH
- Carex (rostlina) genetika MeSH
- fylogeneze * MeSH
- karyotyp * MeSH
- molekulární evoluce MeSH
- motýli * genetika MeSH
- populační genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.
- Klíčová slova
- butterflies, dosage compensation, fusions, sex chromosomes, sexual antagonism, sex‐biased genes,
- MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- motýli * genetika MeSH
- pohlavní chromozomy * genetika MeSH
- syntenie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pheromones convey rich ethological information and guide insects' search behavior. Insects navigating in turbulent environments are tasked with the challenge of coding the temporal structure of an odor plume, obliging recognition of the onset and offset of whiffs of odor. The coding mechanisms that shape odor offset recognition remain elusive. We designed a device to deliver sharp pheromone pulses and simultaneously measured the response dynamics from pheromone-tuned olfactory receptor neurons (ORNs) in male moths and Drosophila. We show that concentration-invariant stimulus duration encoding is implemented in moth ORNs by spike frequency adaptation at two time scales. A linear-nonlinear model fully captures the underlying neural computations and offers an insight into their biophysical mechanisms. Drosophila use pheromone cis-vaccenyl acetate (cVA) only for very short distance communication and are not faced with the need to encode the statistics of the cVA plume. Their cVA-sensitive ORNs are indeed unable to encode odor-off events. Expression of moth pheromone receptors in Drosophila cVA-sensitive ORNs indicates that stimulus-offset coding is receptor independent. In moth ORNs, stimulus-offset coding breaks down for short ( < 200 ms) whiffs. This physiological constraint matches the behavioral latency of switching from the upwind surge to crosswind cast flight upon losing contact with the pheromone.
- MeSH
- acetáty MeSH
- čich fyziologie MeSH
- čichové buňky * fyziologie MeSH
- čichové dráhy fyziologie MeSH
- Drosophila melanogaster fyziologie MeSH
- Drosophila fyziologie MeSH
- feromony * MeSH
- kyseliny olejové MeSH
- můry * fyziologie MeSH
- odoranty analýza MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty MeSH
- cis-vaccenyl acetate MeSH Prohlížeč
- feromony * MeSH
- kyseliny olejové MeSH
Ambient thermal conditions mediate insect growth, development, reproduction, survival, and distribution. With increasingly frequent and severe cold spells, it is critical to determine low-temperature performance and cold tolerances of ecologically and economically essential insect groups to predict their responses to global environmental change. This review covers the cold tolerance strategies of 49 species of Lepidoptera (moths and butterflies), focusing on species that are known as crop pests and crop storage facilities. We synthesize cold tolerance strategies of well-studied species within this order, finding that diapause is a distinctive mechanism that has independently evolved in different genera and families of Lepidoptera. However, the occurrence of diapause in each life stage is specific to the species, and in most studied lepidopteran species, the feeding stage (as larva) is the predominant overwintering stage. We also found that the onset of diapause and the improvement of cold tolerance are interdependent phenomena that typically occur together. Moreover, adopting a cold tolerance strategy is not an inherent, fixed trait and is greatly influenced by a species' geographic distribution and rearing conditions. This review further finds that freeze avoidance rather than freeze tolerance or chill susceptibility is the primary cold tolerance strategy among lepidopteran species. The cold hardiness of lepidopteran insects primarily depends on the accumulation of cryoprotectants and the depression of the supercooling point. We highlight variations in cold tolerance strategies and mechanisms among a subset of Lepidoptera, however, further work is needed to elucidate these strategies for the vast numbers of neglected species and populations to understand broad-scale responses to global change.
- Klíčová slova
- Butterflies, Diapause, Economic pests, Environmental change, Lethal temperature, Moths, Supercooling point,
- MeSH
- aklimatizace MeSH
- klimatické změny MeSH
- Lepidoptera * klasifikace fyziologie MeSH
- nízká teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH