PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.
- Klíčová slova
- PML, aberrant DNA topology, cancer biology, cell biology, cellular senescence, genome maintenance, human, persistent rDNA damage,
- MeSH
- buněčné jadérko * metabolismus MeSH
- dvouřetězcové zlomy DNA MeSH
- lidé MeSH
- poškození DNA MeSH
- protein promyelocytické leukemie * metabolismus genetika MeSH
- ribozomální DNA * genetika metabolismus MeSH
- RNA-polymerasa I metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- PML protein, human MeSH Prohlížeč
- protein promyelocytické leukemie * MeSH
- ribozomální DNA * MeSH
- RNA-polymerasa I MeSH
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
- Klíčová slova
- DNA viruses, Daxx, PML, PML nuclear bodies, SUMOylation, Sp100, Sp110,
- MeSH
- Adenoviridae MeSH
- DNA viry * genetika MeSH
- jaderné proteiny * metabolismus MeSH
- promyelocytická leukemická tělíska MeSH
- protein promyelocytické leukemie metabolismus MeSH
- transkripční faktory metabolismus MeSH
- viry MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- jaderné proteiny * MeSH
- protein promyelocytické leukemie MeSH
- transkripční faktory MeSH
Diverse stress insults trigger interactions of PML with nucleolus, however, the function of these PML nucleolar associations (PNAs) remains unclear. Here we show that during induction of DNA damage-induced senescence in human non-cancerous cells, PML accumulates at the nucleolar periphery simultaneously with inactivation of RNA polymerase I (RNAP I) and nucleolar segregation. Using time-lapse and high-resolution microscopy, we followed the genesis, structural transitions and destiny of PNAs to show that: 1) the dynamic structural changes of the PML-nucleolar interaction are tightly associated with inactivation and reactivation of RNAP I-mediated transcription, respectively; 2) the PML-nucleolar compartment develops sequentially under stress and, upon stress termination, it culminates in either of two fates: disappearance or persistence; 3) all PNAs stages can associate with DNA damage markers; 4) the persistent, commonly long-lasting PML multi-protein nucleolar structures (PML-NDS) associate with markers of DNA damage, indicating a role of PNAs in persistent DNA damage response characteristic for senescent cells. Given the emerging evidence implicating PML in homologous recombination-directed DNA repair, we propose that PNAs contribute to sequestration and faithful repair of the highly unstable ribosomal DNA repeats, a fundamental process to maintain a precise balance between DNA repair mechanisms, with implications for genomic integrity and aging.
- Klíčová slova
- DNA damage, nucleolar segregation, rDNA loci, super-resolution microscopy, time-lapse imaging,
- MeSH
- buněčné jadérko metabolismus MeSH
- doxorubicin MeSH
- fyziologický stres MeSH
- kultivované buňky MeSH
- lidé MeSH
- poškození DNA * MeSH
- protein promyelocytické leukemie metabolismus MeSH
- stárnutí buněk * MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- doxorubicin MeSH
- PML protein, human MeSH Prohlížeč
- protein promyelocytické leukemie MeSH
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.
- Klíčová slova
- Cellular senescence, DNA-PK and PARP/olaparib, Homologous recombination, Ionizing radiation, Super-resolution microscopy,
- MeSH
- 53BP1 metabolismus MeSH
- genový knockout MeSH
- intranukleární inkluzní tělíska metabolismus účinky záření MeSH
- lidé MeSH
- oprava DNA * účinky záření MeSH
- poškození DNA * MeSH
- protein promyelocytické leukemie nedostatek genetika metabolismus MeSH
- stárnutí buněk genetika účinky záření MeSH
- ubikvitinligasy metabolismus MeSH
- vztah dávky záření a odpovědi MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 53BP1 MeSH
- PML protein, human MeSH Prohlížeč
- protein promyelocytické leukemie MeSH
- RNF168 protein, human MeSH Prohlížeč
- ubikvitinligasy MeSH
Cyprinids are the most highly produced group of fishes globally, with common carp being one of the most valuable species of the group. Koi herpesvirus (KHV) infections can result in high levels of mortality, causing major economic losses, and is listed as a notifiable disease by the World Organization for Animal Health. Selective breeding for host resistance has the potential to reduce morbidity and losses due to KHV. Therefore, improving knowledge about host resistance and methods of incorporating genomic data into breeding for resistance may contribute to a decrease in economic losses in carp farming. In the current study, a population of 1,425 carp juveniles, originating from a factorial cross between 40 sires and 20 dams was challenged with KHV. Mortalities and survivors were recorded and sampled for genotyping by sequencing using Restriction Site-Associated DNA sequencing (RADseq). Genome-wide association analyses were performed to investigate the genetic architecture of resistance to KHV. A genome-wide significant QTL affecting resistance to KHV was identified on linkage group 44, explaining approximately 7% of the additive genetic variance. Pooled whole genome resequencing of a subset of resistant (n = 60) and susceptible animals (n = 60) was performed to characterize QTL regions, including identification of putative candidate genes and functional annotation of associated polymorphisms. The TRIM25 gene was identified as a promising positional and functional candidate within the QTL region of LG 44, and a putative premature stop mutation in this gene was discovered.
- Klíčová slova
- Carp, GWAS, Koi herpes virus, RADseq,
- MeSH
- celogenomová asociační studie MeSH
- Herpesviridae MeSH
- herpetické infekce genetika veterinární MeSH
- jednonukleotidový polymorfismus MeSH
- kapři genetika MeSH
- lokus kvantitativního znaku MeSH
- nemoci ryb genetika MeSH
- odolnost vůči nemocem genetika MeSH
- rybí proteiny genetika MeSH
- TRIM protein genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rybí proteiny MeSH
- TRIM protein MeSH
We have investigated amino acid concentrations and protein metabolism in musculus extensor digitorum longus (EDL, fast-twitch, white muscle) and musculus soleus (SOL, slow-twitch, red muscle) of rats sacrificed in the fed state or after one day of starvation. Fractional protein synthesis rates (FRPS) were measured using the flooding dose method (L-[3,4,5-3H]phenylalanine). Activities of two major proteolytic systems in muscle (the ubiquitin-proteasome and lysosomal) were examined by measurement of chymotrypsin like activity of proteasome (CTLA), expression of ubiquitin ligases atrogin-1 and muscle-ring-finger-1 (MuRF-1), and cathepsin B and L activities. Intramuscular concentrations of the most of non-essential amino acids, FRPS, CTLA and cathepsin B and L activities were in postprandial state higher in SOL when compared with EDL. The differences in atrogin-1 and MuRF-1 expression were insignificant. Starvation decreased concentrations of a number of amino acids and increased concentrations of valine, leucine, and isoleucine in blood plasma. Starvation also decreased intramuscular concentrations of a number of amino acids differently in EDL and SOL, decreased protein synthesis (by 31 % in SOL and 47 % in EDL), and increased expression of atrogin-1 and MuRF-1 in EDL. The effect of starvation on CTLA and cathepsin B and L activities was insignificant. It is concluded that slow-twitch (red) muscles have higher rates of protein turnover and may adapt better to brief starvation when compared to fast-twitch (white) muscles. This phenomenon may play a role in more pronounced atrophy of white muscles in aging and muscle wasting disorders.
- MeSH
- aminokyseliny krev metabolismus MeSH
- časové faktory MeSH
- fyziologická adaptace MeSH
- lyzozomy metabolismus MeSH
- postprandiální období * MeSH
- potkani Wistar MeSH
- potravinová deprivace * MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- proteinligasy komplexu SCF genetika metabolismus MeSH
- proteolýza MeSH
- svalová vlákna typu I metabolismus MeSH
- svalová vlákna typu II metabolismus MeSH
- svalové proteiny biosyntéza genetika metabolismus MeSH
- TRIM protein genetika metabolismus MeSH
- ubikvitinace MeSH
- ubikvitinligasy genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- aminokyseliny MeSH
- Fbxo32 protein, rat MeSH Prohlížeč
- proteasomový endopeptidasový komplex MeSH
- proteinligasy komplexu SCF MeSH
- svalové proteiny MeSH
- TRIM protein MeSH
- Trim63 protein, rat MeSH Prohlížeč
- ubikvitinligasy MeSH
After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.
- Klíčová slova
- ATM, ATR, G2, Plk1, checkpoint recovery,
- MeSH
- ATM protein metabolismus MeSH
- biologické modely MeSH
- buněčné linie MeSH
- chromatin metabolismus MeSH
- fosforylace MeSH
- kontrolní body fáze G2 buněčného cyklu * MeSH
- lidé MeSH
- mapování interakce mezi proteiny MeSH
- polo-like kinasa 1 MeSH
- posttranslační úpravy proteinů MeSH
- protein TRIM28 MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteinfosfatasa 2C metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- protoonkogenní proteiny metabolismus MeSH
- represorové proteiny metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- teoretické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ATM protein, human MeSH Prohlížeč
- ATM protein MeSH
- chromatin MeSH
- PPM1D protein, human MeSH Prohlížeč
- protein TRIM28 MeSH
- protein-serin-threoninkinasy MeSH
- proteinfosfatasa 2C MeSH
- proteiny buněčného cyklu MeSH
- protoonkogenní proteiny MeSH
- represorové proteiny MeSH
- TRIM28 protein, human MeSH Prohlížeč
This review focuses on the function of heterochromatin protein HP1 in response to DNA damage. We specifically outline the regulatory mechanisms in which HP1 and its interacting partners are involved. HP1 protein subtypes (HP1α, HP1β, and HP1γ) are the main components of constitutive heterochromatin, and HP1α and HP1β in particular are responsible for heterochromatin maintenance. The recruitment of these proteins to DNA lesions is also important from the perspective of proper DNA repair mechanisms. For example, HP1α is necessary for the binding of the main DNA damage-related protein 53BP1 at DNA repair foci, which are positive not only for the HP1α protein but also for the RAD51 protein, a component of DNA repair machinery. The HP1β protein also appears in monomeric form in DNA lesions together with the evolutionarily well-conserved protein called proliferating cell nuclear antigen (PCNA). The role of HP1 in DNA lesions is also mediated via the Kap1 transcription repressor. Taken together, these results indicate that the function of HP1 after DNA injury depends strongly on the kinetics of other DNA repair-related factors and their post-translational modifications, such as the phosphorylation of Kap-1.
- Klíčová slova
- DNA damage response, DNA repair, HP1 protein,
- MeSH
- chromatin metabolismus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- homolog proteinu s chromoboxem 5 MeSH
- lidé MeSH
- oprava DNA genetika MeSH
- poškození DNA genetika MeSH
- posttranslační úpravy proteinů MeSH
- proliferační antigen buněčného jádra metabolismus MeSH
- protein TRIM28 MeSH
- represorové proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- CBX1 protein, human MeSH Prohlížeč
- CBX5 protein, human MeSH Prohlížeč
- chromatin MeSH
- chromozomální proteiny, nehistonové MeSH
- homolog proteinu s chromoboxem 5 MeSH
- proliferační antigen buněčného jádra MeSH
- protein TRIM28 MeSH
- represorové proteiny MeSH
- TRIM28 protein, human MeSH Prohlížeč
Colchicine is an antimitotic drug which binds to tubulin and at high doses results in cytoskeleton disruption. Colchicine is believed to be an anti-inflammatory agent, though its modulatory effects on the level and transcriptional activity of genes is still a matter of debate. There is growing evidence that alterations in the cytoskeleton exert specific effects on the expression of various genes. This study was undertaken to analyze whether disrupting the microtubule cytoskeleton by colchicine modulates transcriptional levels of MEFV, NF-κB p65, NLRP3, HMGB1, and caspase-3 in neutrophils from patients with familial Mediterranean fever (FMF) and healthy subjects. In the present study, colchicine caused increased expression of NLRP3 (p=0.007) and MEFV (p=0.03), but had no effect on caspase-3, NF-κB p65 and HMGB1 genes in healthy neutrophils. FMF neutrophils were less responsive to the drug treatment. This study supports the hypothesis that, being an anti-inflammatory agent, colchicine at relatively high concentrations might lead to the activation of pro-inflammatory signalling pathways in neutrophils.
- MeSH
- cytoskeletální proteiny genetika MeSH
- dospělí MeSH
- familiární středomořská horečka krev farmakoterapie genetika MeSH
- kaspasa 3 genetika MeSH
- kolchicin farmakologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- neutrofily účinky léků fyziologie MeSH
- protein HMGB1 genetika MeSH
- protein NLRP3 MeSH
- pyrin MeSH
- regulace genové exprese účinky léků MeSH
- studie případů a kontrol MeSH
- transkripční faktor RelA genetika MeSH
- transportní proteiny genetika MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CASP3 protein, human MeSH Prohlížeč
- cytoskeletální proteiny MeSH
- HMGB1 protein, human MeSH Prohlížeč
- kaspasa 3 MeSH
- kolchicin MeSH
- MEFV protein, human MeSH Prohlížeč
- NLRP3 protein, human MeSH Prohlížeč
- protein HMGB1 MeSH
- protein NLRP3 MeSH
- pyrin MeSH
- RELA protein, human MeSH Prohlížeč
- transkripční faktor RelA MeSH
- transportní proteiny MeSH
The MAGE (Melanoma-associated antigen) protein family members are structurally related to each other by a MAGE-homology domain comprised of 2 winged helix motifs WH/A and WH/B. This family specifically evolved in placental mammals although single homologs designated NSE3 (non-SMC element) exist in most eukaryotes. NSE3, together with its partner proteins NSE1 and NSE4 form a tight subcomplex of the structural maintenance of chromosomes SMC5-6 complex. Previously, we showed that interactions of the WH/B motif of the MAGE proteins with their NSE4/EID partners are evolutionarily conserved (including the MAGEA1-NSE4 interaction). In contrast, the interaction of the WH/A motif of NSE3 with NSE1 diverged in the MAGE paralogs. We hypothesized that the MAGE paralogs acquired new RING-finger-containing partners through their evolution and form MAGE complexes reminiscent of NSE1-NSE3-NSE4 trimers. In this work, we employed the yeast 2-hybrid system to screen a human RING-finger protein library against several MAGE baits. We identified a number of potential MAGE-RING interactions and confirmed several of them (MDM4, PCGF6, RNF166, TRAF6, TRIM8, TRIM31, TRIM41) in co-immunoprecipitation experiments. Among these MAGE-RING pairs, we chose to examine MAGEA1-TRIM31 in detail and showed that both WH/A and WH/B motifs of MAGEA1 bind to the coiled-coil domain of TRIM31 and that MAGEA1 interaction stimulates TRIM31 ubiquitin-ligase activity. In addition, TRIM31 directly binds to NSE4, suggesting the existence of a TRIM31-MAGEA1-NSE4 complex reminiscent of the NSE1-NSE3-NSE4 trimer. These results suggest that MAGEA1 functions as a co-factor of TRIM31 ubiquitin-ligase and that the TRIM31-MAGEA1-NSE4 complex may have evolved from an ancestral NSE1-NSE3-NSE4 complex.
- Klíčová slova
- E3 ubiquitin ligase, MAGE, melanoma-associated antigen, MAGEA1, MDM4, MHD, MAGE homology domain, NSE, non-SMC element, NSE1-NSE3-NSE4 complex, NSE4/EID family, PCGF6, RING-finger proteins, RNF166, SMC, structure maintenance of chromosomes, TRAF6, TRIM family, TRIM, tripartite motif, TRIM31, TRIM41, TRIM8, WH, winged helix, Y2H, yeast 2-hybrid., melanoma-associated antigen family, protein evolution, ubiquitination,
- MeSH
- biologické modely MeSH
- chromatografie kapalinová MeSH
- domény RING-prstů MeSH
- HEK293 buňky MeSH
- imunoprecipitace MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- multimerizace proteinu MeSH
- multiproteinové komplexy metabolismus MeSH
- nádorové proteiny chemie metabolismus MeSH
- peptidové fragmenty chemie metabolismus MeSH
- peptidy chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- tandemová hmotnostní spektrometrie MeSH
- techniky dvojhybridového systému MeSH
- transportní proteiny metabolismus MeSH
- TRIM protein MeSH
- ubikvitinligasy chemie metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- MAGE-A1 protein (278-286), human MeSH Prohlížeč
- multiproteinové komplexy MeSH
- nádorové proteiny MeSH
- NSE4 protein, human MeSH Prohlížeč
- NSMCE1 protein, human MeSH Prohlížeč
- peptidové fragmenty MeSH
- peptidy MeSH
- transportní proteiny MeSH
- TRIM protein MeSH
- TRIM31 protein, human MeSH Prohlížeč
- ubikvitinligasy MeSH