Nejvíce citovaný článek - PubMed ID 17305535
Silybin and silymarin--new and emerging applications in medicine
Silymarin is an extract obtained from the seeds of milk thistle (Sylibum marianum L., Asteraceae) and contains several structurally related flavonolignans and a small family of flavonoids. Mouse spleen cells represent highly sensitive primary cells suitable for studying the pharmacological potential and biofunctional properties of natural substances. Cultivation of splenocytes for 24 h under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen) resulted in decreased viability of splenocytes compared to intact cells. A cytoprotective effect of silybin (SB), silychristin (SCH) and 2,3-dehydrosilybin (DHSB) was observed at concentrations as low as 5 µmol/ml. At 50 µmol/ml, these substances restored and/or stimulated viability and mitochondrial membrane potential and had anti-apoptotic effect in the order SB > DHSB > SCH. The substances demonstrated a concentration-dependent activity in restoring the redox balance based on the changes in the concentration of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide. This was in the order DHSB > SCH > SB, which correlated with the suppressed expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase and glutathione peroxidase. The strong stimulation of the superoxide dismutase 1 gene converting ROS to H2O2 points to its dominant role in the maintaining redox homeostasis in splenocytes, which was disrupted by oxidative stress due to non-physiological culture conditions. Our study showed significant differences in the cytoprotective, antioxidant and anti-apoptotic activities of SB, SCH, and DHSB on splenocytes exposed to mild and AAPH-induced oxidative stress.
- Klíčová slova
- 2,3-dehydrosilybin, Apoptosis, Mouse splenocytes, Redox balance, Silybin, Silychristin, Viability,
- MeSH
- antioxidancia * farmakologie MeSH
- apoptóza * účinky léků MeSH
- cytoprotekce * účinky léků MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- oxid dusnatý metabolismus MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- silibinin MeSH
- silymarin * farmakologie analogy a deriváty MeSH
- slezina * cytologie účinky léků metabolismus MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- dehydrosilybin MeSH Prohlížeč
- faktor 2 související s NF-E2 MeSH
- oxid dusnatý MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
- silibinin MeSH
- silychristin MeSH Prohlížeč
- silymarin * MeSH
Some aromatic polyketides such as dietary flavonoids have gained reputation as miraculous molecules with preeminent beneficial effects on human health, for example, as antioxidants. However, there is little conclusive evidence that dietary flavonoids provide significant leads for developing more effective drugs, as the majority appears to be of negligible medicinal importance. Some aromatic polyketides of limited distribution have shown more interesting medicinal properties and additional research should be focused on them. Combretastatins, analogues of phenoxodiol, hepatoactive kavalactones, and silymarin are showing a considerable promise in the advanced phases of clinical trials for the treatment of various pathologies. If their limitations such as adverse side effects, poor water solubility, and oral inactivity are successfully eliminated, they might be prime candidates for the development of more effective and in some case safer drugs. This review highlights some of the newer compounds, where they are in the new drug pipeline and how researchers are searching for additional likely candidates.
- Klíčová slova
- anticancer, antioxidants, clinical significance, dietary supplements, flavonoids, nutrition, polyketides,
- MeSH
- antioxidancia * chemie terapeutické užití MeSH
- flavonoidy * chemie terapeutické užití MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- polyketidy * chemie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia * MeSH
- flavonoidy * MeSH
- polyketidy * MeSH
The aims of this work were to summarize the nutritional value of the milk thistle seed cakes and hempseed cakes and describe the influence on selected performance parameters, metabolism and animal health from inclusion of these non-traditional feeds into diets. It seems more appropriate to apply the extract of the bioactive substances complex to the livestock diets than addition of expellers or other forms of plants processing. The seed expellers, etc. mostly worsened the chickens' performance parameters with higher doses in diets, while most of the work using the extract yields had positive results on animal performance.
- Klíčová slova
- Cannabis sativa, Silybum marianum, broilers, expellers, hens, pomace, poultry nutrition,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Silybin is considered to be the main biologically active component of silymarin. Its oxidized derivative 2,3-dehydrosilybin typically occurs in silymarin in small, but non-negligible amounts (up to 3%). Here, we investigated in detail complex biological activities of silybin and 2,3-dehydrosilybin optical isomers. Antioxidant activities of pure stereomers A and B of silybin and 2,3-dehydrosilybin, as well as their racemic mixtures, were investigated by using oxygen radical absorption capacity (ORAC) and cellular antioxidant activity (CAA) assay. All substances efficiently reduced nitric oxide production and cytokines (TNF-α, IL-6) release in a dose-dependent manner. Multidrug resistance (MDR) modulating potential was evaluated as inhibition of P-glycoprotein (P-gp) ATPase activity and regulation of ATP-binding cassette (ABC) protein expression. All the tested compounds showed strong dose-dependent inhibition of P-gp pump. Moreover, 2,3-dehydrosilybin A (30 µM) displayed the strongest sensitization of doxorubicin-resistant ovarian carcinoma. Despite these significant effects, silybin B was the only compound acting directly upon P-gp in vitro and also downregulating the expression of respective MDR genes. This compound altered the expression of P-glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). 2,3-Dehydrosilybin AB exhibited the most effective inhibition of acetylcholinesterase activity. We can clearly postulate that silybin derivatives could serve well as modulators of a cancer drug-resistant phenotype.
- Klíčová slova
- P-glycoprotein, acetylcholinesterase inhibition, cytokines, dehydrosilybin, doxorubicin resistance, expression profile, immunomodulation, silybin,
- Publikační typ
- časopisecké články MeSH
Silymarin is the standardized extract from the fruits of Silybum marianum (L.) Gaertn., a well-known hepatoprotectant and antioxidant. Recently, bioactive compounds of silymarin, i.e., silybins and their 2,3-dehydro derivatives, have been shown to exert anticancer activities, yet with unclear mechanisms. This study combines in silico and in vitro methods to reveal the potential interactions of optically pure silybins and dehydrosilybins with novel protein targets. The shape and chemical similarity with approved drugs were evaluated in silico, and the potential for interaction with the Hedgehog pathway receptor Smoothened (SMO) and BRAF kinase was confirmed by molecular docking. In vitro studies on SMO and BRAF V600E kinase activity and in BRAF V600E A-375 human melanoma cell lines were further performed to examine their effects on these proteins and cancer cell lines and to corroborate computational predictions. Our in silico results direct to new potential targets of silymarin constituents as dual inhibitors of BRAF and SMO, two major targets in anticancer therapy. The experimental studies confirm that BRAF kinase and SMO may be involved in mechanisms of anticancer activities, demonstrating dose-dependent profiles, with dehydrosilybins showing stronger effects than silybins. The results of this work outline the dual SMO/BRAF effect of flavonolignans from Silybum marianum with potential clinical significance. Our approach can be applied to other natural products to reveal their potential targets and mechanism of action.
- Klíčová slova
- BRAF kinase, Smoothened, cytotoxicity, in silico methods, silybins,
- Publikační typ
- časopisecké články MeSH
Flavonolignans occur typically in Silybum marianum (milk thistle) fruit extract, silymarin, which contains silybin, isosilybin, silychristin, silydianin, and their 2,3-dehydroderivatives, together with other minor flavonoids and a polymeric phenolic fraction. Biotransformation of individual silymarin components by human microbiota was studied ex vivo, using batch incubations inoculated by fecal slurry. Samples at selected time points were analyzed by ultrahigh-performance liquid chromatography equipped with mass spectrometry. The initial experiment using a concentration of 200 mg/L showed that flavonolignans are resistant to the metabolic action of intestinal microbiota. At the lower concentration of 10 mg/L, biotransformation of flavonolignans was much slower than that of taxifolin, which was completely degraded after 16 h. While silybin, isosilybin, and 2,3-dehydrosilybin underwent mostly demethylation, silychristin was predominantly reduced. Silydianin, 2,3-dehydrosilychristin and 2,3-dehydrosilydianin were reduced, as well, and decarbonylation and cysteine conjugation proceeded. No low-molecular-weight phenolic metabolites were detected for any of the compounds tested. Strong inter-individual differences in the biotransformation profile were observed among the four fecal-material donors. In conclusion, the flavonolignans, especially at higher (pharmacological) doses, are relatively resistant to biotransformation by gut microbiota, which, however, depends strongly on the individual structures of these isomeric compounds, but also on the stool donor.
- Klíčová slova
- UHPLC–MS, biotransformation, flavonolignans, gut microbiota, inter-individual differences, metabolites, silymarin,
- Publikační typ
- časopisecké články MeSH
Silymarin is a traditional drug and food supplement employed for numerous liver disorders. The available studies indicate that its activities may be broader, in particular due to claimed benefits in some cardiovascular diseases, but the contributions of individual silymarin components are unclear. Therefore, we tested silymarin flavonolignans as pure diastereomers as well as their sulfated metabolites for potential vasorelaxant and antiplatelet effects in isolated rat aorta and in human blood, respectively. Eleven compounds from a panel of 17 tested exhibited a vasorelaxant effect, with half maximal effective concentrations (EC50) ranging from 20 to 100 µM, and some substances retained certain activity even in the range of hundreds of nM. Stereomers A were generally more potent as vasorelaxants than stereomers B. Interestingly, the most active compound was a metabolite-silychristin-19-O-sulfate. Although initial experiments showed that silybin, 2,3-dehydrosilybin, and 2,3-dehydrosilychristin were able to substantially block platelet aggregation, their effects were rapidly abolished with decreasing concentration, and were negligible at concentrations ≤100 µM. In conclusion, metabolites of silymarin flavonolignans seem to have biologically relevant vasodilatory properties, but the effect of silymarin components on platelets is low or negligible.
- Klíčová slova
- Silybum marianum, aorta, blood coagulation, metabolites, milk thistle, sulfates, thrombocytes, vasorelaxant,
- MeSH
- agregace trombocytů účinky léků MeSH
- aorta účinky léků MeSH
- flavonolignany chemie farmakologie MeSH
- inhibitory agregace trombocytů chemie farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- molekulární struktura MeSH
- vazodilatancia MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- flavonolignany MeSH
- inhibitory agregace trombocytů MeSH
- vazodilatancia MeSH
Mesocestoides vogae larvae represent a suitable model for evaluating the larvicidal potential of various compounds. In this study we investigated the in vitro effects of three natural flavonolignans-silybin (SB), 2,3-dehydrosilybin (DHSB) and silychristin (SCH)-on M. vogae larvae at concentrations of 5 and 50 μM under aerobic and hypoxic conditions for 72 h. With both kinds of treatment, the viability and motility of larvae remained unchanged, metabolic activity, neutral red uptake and concentrations of neutral lipids were reduced, in contrast with a significantly elevated glucose content. Incubation conditions modified the effects of individual FLs depending on their concentration. Under both sets of conditions, SB and SCH suppressed metabolic activity, the concentration of glucose, lipids and partially motility more at 50 μM, but neutral red uptake was elevated. DHSB exerted larvicidal activity and affected motility and neutral lipid concentrations differently depending on the cultivation conditions, whereas it decreased glucose concentration. DHSB at the 50 μM concentration caused irreversible morphological alterations along with damage to the microvillus surface of larvae, which was accompanied by unregulated neutral red uptake. In conclusion, SB and SCH suppressed mitochondrial functions and energy stores, inducing a physiological misbalance, whereas DHSB exhibited a direct larvicidal effect due to damage to the tegument and complete disruption of larval physiology and metabolism.
- Klíčová slova
- 2,3-dehydrosilybin, Mesocestoides vogae larvae, aerobic and hypoxic cultivation, silybin, silychristin,
- MeSH
- antioxidancia farmakologie MeSH
- hypoxie * MeSH
- larva účinky léků fyziologie MeSH
- Mesocestoides účinky léků fyziologie MeSH
- ochranné látky farmakologie MeSH
- silibinin farmakologie MeSH
- silymarin farmakologie MeSH
- techniky in vitro MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- antioxidancia MeSH
- dehydrosilybin MeSH Prohlížeč
- ochranné látky MeSH
- silibinin MeSH
- silychristin MeSH Prohlížeč
- silymarin MeSH
Silymarin, an extract from milk thistle (Silybum marianum) fruits, is consumed in various food supplements. The metabolism of silymarin flavonolignans in mammals is complex, the exact structure of their metabolites still remains partly unclear and standards are not commercially available. This work is focused on the preparation of sulfated metabolites of silymarin flavonolignans. Sulfated flavonolignans were prepared using aryl sulfotransferase from Desulfitobacterium hafniense and p-nitrophenyl sulfate as a sulfate donor and characterized by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). Their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging; ferric (FRAP) and Folin⁻Ciocalteu reagent (FCR) reducing activity; anti-lipoperoxidant potential; and effect on the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway were examined. Pure silybin A 20-O-sulfate, silybin B 20-O-sulfate, 2,3-dehydrosilybin-20-O-sulfate, 2,3-dehydrosilybin-7,20-di-O-sulfate, silychristin-19-O-sulfate, 2,3-dehydrosilychristin-19-O-sulfate, and silydianin-19-O-sulfate were prepared and fully characterized. Sulfated 2,3-dehydroderivatives were more active in FCR and FRAP assays than the parent compounds, and remaining sulfates were less active chemoprotectants. The sulfated flavonolignans obtained can be now used as authentic standards for in vivo metabolic experiments and for further research on their biological activity.
- Klíčová slova
- Silybum marianum, activity, biotransformation, metabolites, sulfate, sulfotransferase,
- MeSH
- antioxidancia chemie MeSH
- flavonolignany chemie MeSH
- hmotnostní spektrometrie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura MeSH
- ostropestřec mariánský chemie MeSH
- ovoce chemie MeSH
- potravní doplňky MeSH
- rostliny chemie ultrastruktura MeSH
- scavengery volných radikálů chemie MeSH
- sírany chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- flavonolignany MeSH
- scavengery volných radikálů MeSH
- sírany MeSH
In many developing countries, jaundice is the common symptom of hepatic diseases which are a major cause of mortality. The use of natural product-based therapies is very popular for such hepatic disorders. A great number of medicinal plants have been utilized for this purpose and some facilitated the discovery of active compounds which helped the development of new synthetic drugs against jaundice. However, more epidemiological studies and clinical trials are required for the practical implementation of the plant pharmacotherapy of jaundice. The focus of this second part of our review is on several of the most prominent plants used against jaundice identified in the analysis performed in the first part of the review viz. Andrographis paniculata (Burm.f.) Nees, Silybum marianum (L.) Gaertn., Terminalia chebula Retz., Glycyrrhiza glabra L. and some species of genus Phyllanthus. Furthermore, we discuss their physiological effects, biologically active ingredients, and the potential mechanisms of action. Some of the most important active ingredients were silybin (also recommended by German commission), phyllanthin and andrographolide, whose action leads to bilirubin reduction and normalization of the levels of relevant serum enzymes indicative for the pathophysiological status of the liver.
- Klíčová slova
- alkaline phosphatase, bilirubin, jaundice, oxidative stress, phytoconstituents, serum enzymes, traditional use,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH