Nejvíce citovaný článek - PubMed ID 18654796
Two flowering locus T (FT) homologs in Chenopodium rubrum differ in expression patterns
Chenopodium ficifolium is a close diploid relative of the tetraploid crop Chenopodium quinoa. Owing to its reproducible germination and seedling development, it becomes a promising model for studying floral induction, providing a basis for the comparison with C. quinoa. Two C. ficifolium genotypes differ in photoperiodic requirement: C. ficifolium 283 accelerates flowering under long days, whereas C. ficifolium 459 flowers earlier under short days. This study conducted a comprehensive transcriptomic and hormonomic analysis of floral induction in the long-day C. ficifolium 283 and compared the findings to previous experiments with the short-day C. ficifolium. Phytohormone concentrations and gene expression profiles during floral induction were largely similar between the two genotypes. However, a subset of genes exhibited contrasting expression patterns, aligning with the genotypes' differing photoperiodic requirements. These genes, predominantly homologs of flowering-related genes in Arabidopsis thaliana, were activated under long days in C. ficifolium 283 and under short days in C. ficifolium 459. Notably, the contrasting expression of the FLOWERING LOCUS T-LIKE 2-1 gene, which was previously shown to induce precocious flowering in A. thaliana, confirmed its role as a floral activator, despite its low expression levels.
- Klíčová slova
- Flowering, genes with contrasting expression trends, long-day Chenopodium ficifolium, phytohormones, transcriptome,
- MeSH
- Chenopodium * genetika MeSH
- fotoperioda MeSH
- genotyp MeSH
- květy * genetika růst a vývoj MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
The FLOWERING LOCUS T (FT) gene is the essential integrator of flowering regulatory pathways in angiosperms. The paralogs of the FT gene may perform antagonistic functions, as exemplified by BvFT1, that suppresses flowering in Beta vulgaris, unlike the paralogous activator BvFT2. The roles of FT genes in other amaranths were less investigated. Here, we transformed Arabidopsis thaliana with the FLOWERING LOCUS T like (FTL) genes of Chenopodium ficifolium and found that both CfFTL1 and CfFTL2-1 accelerated flowering, despite having been the homologs of the Beta vulgaris floral promoter and suppressor, respectively. The floral promotive effect of CfFTL2-1 was so strong that it caused lethality when overexpressed under the 35S promoter. CfFTL2-1 placed in an inducible cassette accelerated flowering after induction with methoxyphenozide. The spontaneous induction of CfFTL2-1 led to precocious flowering in some primary transformants even without chemical induction. The CqFT2-1 homolog from Chenopodium quinoa had the same impact on viability and flowering as CfFTL2-1 when transferred to A. thaliana. After the FTL gene duplication in Amaranthaceae, the FTL1 copy maintained the role of floral activator. The second copy FTL2 underwent subsequent duplication and functional diversification, which enabled it to control the onset of flowering in amaranths to adapt to variable environments.
The FLOWERINGLOCUS T like 2–1 gene of Chenopodium ficifolium andChenopodium quinoa acts as a strong activator of flowering in Arabidopsis, triggering flowering at cotyledon stage and causing lethality when overexpressed.
- Klíčová slova
- Chenopodium, FLOWERING LOCUS T like genes, floral induction, flowering, lethality,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- Chenopodium * genetika metabolismus MeSH
- květy genetika metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- regulace genové exprese u rostlin genetika MeSH
- semenáček metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny huseníčku * MeSH
Chenopodium ficifoliumflowered under long days despite much lower expression ofFLOWERING LOCUS Thomolog than under short days. Frequent duplications of the FLOWERING LOCUS T (FT) gene across various taxonomic lineages resulted in FT paralogs with floral repressor function, whereas others duplicates maintained their floral-promoting role. The FT gene has been confirmed as the inducer of photoperiodic flowering in most angiosperms analyzed to date. We identified all FT homologs in the transcriptome of Chenopodium ficifolium and in the genome of Chenopodium suecicum, which are closely related to diploid progenitors of the tetraploid crop Chenopodium quinoa, and estimated their expression during photoperiodic floral induction. We found that expression of FLOWERING LOCUS T like 1 (FTL1), the ortholog of the sugar beet floral activator BvFT2, correlated with floral induction in C. suecicum and short-day C. ficifolium, but not with floral induction in C. ficifolium with accelerated flowering under long days. This C. ficifolium accession was induced to flowering without the concomitant upregulation of any FT homolog.
- Klíčová slova
- Amaranthaceae, FLOWERING LOCUS T like genes, Floral induction, Gene expression, Photoperiod, Transcriptome,
- MeSH
- aktivace transkripce MeSH
- Chenopodium genetika růst a vývoj MeSH
- fotoperioda MeSH
- květy genetika růst a vývoj MeSH
- Magnoliopsida genetika růst a vývoj MeSH
- regulace genové exprese u rostlin * MeSH
- upregulace * MeSH
- Publikační typ
- časopisecké články MeSH
Accurate gene expression measurements are essential in studies of both crop and wild plants. Reverse transcription quantitative real-time PCR (RT-qPCR) has become a preferred tool for gene expression estimation. A selection of suitable reference genes for the normalization of transcript levels is an essential prerequisite of accurate RT-qPCR results. We evaluated the expression stability of eight candidate reference genes across roots, leaves, flower buds and pollen of Silene vulgaris (bladder campion), a model plant for the study of gynodioecy. As random priming of cDNA is recommended for the study of organellar transcripts and poly(A) selection is indicated for nuclear transcripts, we estimated gene expression with both random-primed and oligo(dT)-primed cDNA. Accordingly, we determined reference genes that perform well with oligo(dT)- and random-primed cDNA, making it possible to estimate levels of nucleus-derived transcripts in the same cDNA samples as used for organellar transcripts, a key benefit in studies of cyto-nuclear interactions. Gene expression variance was estimated by RefFinder, which integrates four different analytical tools. The SvACT and SvGAPDH genes were the most stable candidates across various organs of S. vulgaris, regardless of whether pollen was included or not.
- MeSH
- komplementární DNA genetika MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- polymerázová řetězová reakce s reverzní transkripcí metody MeSH
- rostlinné geny * MeSH
- sekvenční analýza RNA MeSH
- Silene genetika MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
- Názvy látek
- komplementární DNA MeSH
The FT/TFL1 gene family controls important aspects of plant development: MFT-like genes affect germination, TFL1-like genes act as floral inhibitors, and FT-like genes are floral activators. Gene duplications produced paralogs with modified functions required by the specific lifestyles of various angiosperm species. We constructed the transcriptome of the weedy annual plant Chenopodium rubrum and used it for the comprehensive search for the FT/TFL1 genes. We analyzed their phylogenetic relationships across Amaranthaceae and all angiosperms. We discovered a very ancient phylogenetic clade of FT genes represented by the CrFTL3 gene of C. rubrum Another paralog CrFTL2 showed an unusual structural rearrangement which might have contributed to the functional shift. We examined the transcription patterns of the FT/TFL1 genes during the vegetative growth and floral transition in C. rubrum to get clues about their possible functions. All the genes except for the constitutively expressed CrFTL2 gene, and the CrFTL3 gene, which was transcribed only in seeds, exhibited organ-specific expression influenced by the specific light regime. The CrFTL1 gene was confirmed as a single floral activator from the FT/TFL1 family in C. rubrum Its floral promoting activity may be counteracted by CrTFL1 C. rubrum emerges as an easily manipulated model for the study of floral induction in weedy fast-cycling plants lacking a juvenile phase.
- Klíčová slova
- Amaranthaceae, Chenopodium rubrum, FLOWERING LOCUS T/TERMINAL FLOWER1 gene family, evolution, flowering, gene rearrangement, transcriptome,
- MeSH
- Amaranthaceae klasifikace genetika růst a vývoj MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- konformace proteinů MeSH
- květy genetika MeSH
- molekulární evoluce * MeSH
- molekulární modely MeSH
- multigenová rodina MeSH
- orgánová specificita MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné geny * MeSH
- rostlinné proteiny chemie genetika MeSH
- stanovení celkové genové exprese MeSH
- světlo MeSH
- transkriptom MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
The proper timing of flowering is essential for the adaptation of plant species to their ever-changing environments. The central position in a complex regulatory network is occupied by the protein FT, which acts as a florigen. We found that light, following a permissive period of darkness, was essential to induce the floral promoter CrFTL1 and to initiate flowering in seedlings of the short-day plant Chenopodium rubrum L. We also identified two novel CONSTANS-like genes in C. rubrum and observed their rhythmic diurnal and circadian expressions. Strong rhythmicity of expression suggested that the two genes might have been involved in the regulation of photoperiod-dependent processes, despite their inability to complement co mutation in A. thaliana. The CrCOL1 and CrCOL2 genes were downregulated by dark-light transition, regardless of the length of a preceding dark period. The same treatment activated the floral promoter CrFTL1. Light therefore affected CrCOL and CrFTL1 in an opposite manner. Both CrCOL genes and CrFTL1 displayed expression patterns unique among short-day plants. Chenopodium rubrum, the subject of classical physiological studies in the past, is emerging as a useful model for the investigation of flowering at the molecular level.
- Klíčová slova
- CONSTANS-like, Chenopodium rubrum, FLOWERING LOCUS T-like, flowering, gene expression, light sensitivity, short-day plant.,
- MeSH
- Arabidopsis MeSH
- Chenopodium genetika růst a vývoj fyziologie MeSH
- florigen metabolismus MeSH
- fotoperioda MeSH
- květy růst a vývoj MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- semenáček růst a vývoj MeSH
- testy genetické komplementace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- florigen MeSH
- rostlinné proteiny MeSH
BACKGROUND: Auxin binding protein 1 (ABP1) is a putative auxin receptor and its function is indispensable for plant growth and development. ABP1 has been shown to be involved in auxin-dependent regulation of cell division and expansion, in plasma-membrane-related processes such as changes in transmembrane potential, and in the regulation of clathrin-dependent endocytosis. However, the ABP1-regulated downstream pathway remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Using auxin transport assays and quantitative analysis of cellular morphology we show that ABP1 regulates auxin efflux from tobacco BY-2 cells. The overexpression of ABP1can counterbalance increased auxin efflux and auxin starvation phenotypes caused by the overexpression of PIN auxin efflux carrier. Relevant mechanism involves the ABP1-controlled vesicle trafficking processes, including positive regulation of endocytosis of PIN auxin efflux carriers, as indicated by fluorescence recovery after photobleaching (FRAP) and pharmacological manipulations. CONCLUSIONS/SIGNIFICANCE: The findings indicate the involvement of ABP1 in control of rate of auxin transport across plasma membrane emphasizing the role of ABP1 in regulation of PIN activity at the plasma membrane, and highlighting the relevance of ABP1 for the formation of developmentally important, PIN-dependent auxin gradients.
- MeSH
- Arabidopsis cytologie metabolismus MeSH
- buněčné linie MeSH
- FRAP MeSH
- konfokální mikroskopie MeSH
- kyseliny indoloctové metabolismus MeSH
- modulátory membránového transportu metabolismus MeSH
- receptory buněčného povrchu biosyntéza metabolismus MeSH
- rostlinné proteiny biosyntéza metabolismus MeSH
- tabák cytologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- auxin-binding protein 1 MeSH Prohlížeč
- endoplasmic reticulum auxin-binding protein 4, Zea mays MeSH Prohlížeč
- kyseliny indoloctové MeSH
- modulátory membránového transportu MeSH
- receptory buněčného povrchu MeSH
- rostlinné proteiny MeSH