Most cited article - PubMed ID 19330918
Impairment of the autoregulation of renal hemodynamics and of the pressure-natriuresis relationship precedes the development of hypertension in Cyp1a1-Ren-2 transgenic rats
The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.
- MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Hypertension * metabolism physiopathology MeSH
- Blood Pressure MeSH
- Rats MeSH
- Humans MeSH
- Disease Models, Animal MeSH
- Renin-Angiotensin System MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
The aim was to evaluate the effects of renal denervation (RDN) on autoregulation of renal hemodynamics and the pressure-natriuresis relationship in Ren-2 transgenic rats (TGR) with aorto-caval fistula (ACF)-induced heart failure (HF). RDN was performed one week after creation of ACF or sham-operation. Animals were prepared for evaluation of autoregulatory capacity of renal blood flow (RBF) and glomerular filtration rate (GFR), and of the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. Their basal values of blood pressure and renal function were significantly lower than with innervated sham-operated TGR (p < 0.05 in all cases): mean arterial pressure (MAP) (115 ± 2 vs. 160 ± 3 mmHg), RBF (6.91 ± 0.33 vs. 10.87 ± 0.38 ml.min-1.g-1), urine flow (UF) (11.3 ± 1.79 vs. 43.17 ± 3.24 µl.min-1.g-1) and absolute sodium excretion (UNaV) (1.08 ± 0.27 vs, 6.38 ± 0.76 µmol.min-1.g-1). After denervation ACF TGR showed improved autoregulation of RBF: at lowest RAP level (80 mmHg) the value was higher than in innervated ACF TGR (6.92 ± 0.26 vs. 4.54 ± 0.22 ml.min-1.g-1, p < 0.05). Also, the pressure-natriuresis relationship was markedly improved after RDN: at the RAP of 80 mmHg UF equaled 4.31 ± 0.99 vs. 0.26 ± 0.09 µl.min-1.g-1 recorded in innervated ACF TGR, UNaV was 0.31 ± 0.05 vs. 0.04 ± 0.01 µmol min-1.g-1 (p < 0.05 in all cases). In conclusion, in our model of hypertensive rat with ACF-induced HF, RDN improved autoregulatory capacity of RBF and the pressure-natriuresis relationship when measured at the stage of HF decompensation.
- Keywords
- Ren-2 transgenic hypertensive rat, Renal autoregulation, Renal blood flow, Volume-overload heart failure, sodium excretion,
- MeSH
- Glomerular Filtration Rate MeSH
- Hypertension * MeSH
- Cardio-Renal Syndrome * MeSH
- Blood Pressure MeSH
- Rats MeSH
- Kidney MeSH
- Natriuresis MeSH
- Fistula * MeSH
- Rats, Transgenic MeSH
- Renal Circulation MeSH
- Heart Failure * MeSH
- Sympathectomy MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The aim of the present study was to assess the autoregulatory capacity of renal blood flow (RBF) and of the pressure-natriuresis characteristics in the early phase of heart failure (HF) in rats, normotensive and with angiotensin II (ANG II)-dependent hypertension. Ren-2 transgenic rats (TGR) were employed as a model of ANG II-dependent hypertension. HF was induced by creating the aorto-caval fistula (ACF). One week after ACF creation or sham-operation, the animals were prepared for studies evaluating in vivo RBF autoregulatory capacity and the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. In ACF TGR the basal mean arterial pressure, RBF, urine flow (UF), and absolute sodium excretion (UNaV) were all significantly lower tha n in sham-operated TGR. In the latter, reductions in renal arterial pressure (RAP) significantly decreased RBF whereas in ACF TGR they did not change. Stepwise reductions in RAP resulted in marked decreases in UF and UNaV in sham-operated as well as in ACF TGR, however, these decreases were significantly greater in the former. Our data show that compared with sham-operated TGR, ACF TGR displayed well-maintained RBF autoregulatory capacity and improved slope of the pressure-natriuresis relationship. Thus, even though in the very early HF stage renal dysfunction was demonstrable, in the HF model of ANG II-dependent hypertensive rat such dysfunction and the subsequent HF decompensation cannot be simply ascribed to impaired renal autoregulation and pressure-natriuresis relationship.
- Keywords
- Ren-2 transgenic hypertensive rat, Renal autoregulation, Renal blood flow, Sodium excretion, Volume-overload heart failure,
- MeSH
- Angiotensin II pharmacology MeSH
- Homeostasis MeSH
- Hypertension * MeSH
- Blood Pressure MeSH
- Rats MeSH
- Kidney MeSH
- Natriuresis MeSH
- Rats, Transgenic MeSH
- Renal Circulation MeSH
- Sodium MeSH
- Heart Failure * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Angiotensin II MeSH
- Sodium MeSH
The aim of the study was to clarify the role of the interplay between hypertension and the renin-angiotensin system (RAS) in the pathophysiology of myocardial ischemia/reperfusion (I/R) injury. We hypothesized that in the late phase of hypertension with already developed signs of end-organ damage, inappropriate RAS activation could impair cardiac tolerance to I/R injury. Experiments were performed in male Cyp1a1-Ren-2 transgenic rats with inducible hypertension. The early phase of ANG II-dependent hypertension was induced by 5 days and the late phase by the 13 days dietary indole-3-carbinol (I3C) administration. Noninduced rats served as controls. Echocardiography and pressure-volume analysis were performed, angiotensins' levels were measured and cardiac tolerance to ischemia/reperfusion injury was studied. The infarct size was significantly reduced (by 50%) in 13 days I3C-induced hypertensive rats with marked cardiac hypertrophy, this reduction was abolished by losartan treatment. In the late phase of hypertension there are indications of a failing heart, mainly in reduced preload recruitable stroke work (PRSW), but only nonsignificant trends in worsening of some other parameters, showing that the myocardium is in a compensated phase. The influence of the RAS depends on the balance between the vasoconstrictive and the opposed vasodilatory axis. In the initial stage of hypertension, the vasodilatory axis of the RAS prevails, and with the development of hypertension the vasoconstrictive axis of the RAS becomes stronger. We observed a clear effect of AT1 receptor blockade on maximum pressure in left ventricle, cardiac hypertrophy and ANG II levels. In conclusion, we confirmed improved cardiac tolerance to I/R injury in hypertensive hypertrophied rats and showed that, in the late phase of hypertension, the myocardium is in a compensated phase.
- Keywords
- ANG II-dependent hypertension, AT1 receptor antagonist, P-V analysis, ischemia/reperfusion injury, renin-angiotensin system,
- Publication type
- Journal Article MeSH
We investigated the role of the interaction between hypertension and the renin-angiotensin system in the pathophysiology of myocardial ischemia/reperfusion injury. We hypothesized that in the early phase of angiotensin II (ANG II)-dependent hypertension with developed left ventricular hypertrophy, cardioprotective mechanism(s) are fully activated. The experiments were performed in transgenic rats with inducible hypertension, noninduced rats served as controls. The early phase of ANG II-dependent hypertension was induced by five-days (5 days) dietary indole-3-carbinol administration. Cardiac hypertrophy, ANG II and ANG 1-7 levels, protein expression of their receptors and enzymes were determined. Separate groups were subjected to acute myocardial ischemia/reperfusion injury, and infarct size and ventricular arrhythmias were assessed. Induced rats developed marked cardiac hypertrophy accompanied by elevated ANG levels. Ischemia/reperfusion mortality was significantly higher in induced than noninduced rats (52.1 and 25%, respectively). The blockade of AT1 receptors with losartan significantly increased survival rate in both groups. Myocardial infarct size was significantly reduced after 5 days induction (by 11%), without changes after losartan treatment. In conclusion, we confirmed improved cardiac tolerance to ischemia/reperfusion injury in hypertensive cardiohypertrophied rats and found that activation of AT1 receptors by locally produced ANG II in the heart was not the mechanism underlying infarct size reduction.
- Keywords
- angiotensin II receptor antagonist, hypertension, infarct size, ischemia/reperfusion injury, renin-angiotensin system,
- Publication type
- Journal Article MeSH
We hypothesized that vascular actions of 20-hydroxyeicosatetraenoic acid (20-HETE), the product of cytochrome P450 (CYP450)-dependent ω-hydroxylase, potentiate prohypertensive actions of angiotensin II (ANG II) in Cyp1a1-Ren-2 transgenic rats, a model of ANG II-dependent malignant hypertension. Therefore, we evaluated the antihypertensive effectiveness of 20-HETE receptor antagonist (AAA) in this model. Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. Treatment with AAA was started either simultaneously with induction of hypertension or 10 days later, during established hypertension. Systolic blood pressure (SBP) was monitored by radiotelemetry, indices of renal and cardiac injury, and kidney ANG II levels were determined. In I3C-induced hypertensive rats, early AAA treatment reduced SBP elevation (to 161 ± 3 compared with 199 ± 3 mmHg in untreated I3C-induced rats), reduced albuminuria, glomerulosclerosis index, and cardiac hypertrophy (P<0.05 in all cases). Untreated I3C-induced rats showed augmented kidney ANG II (405 ± 14 compared with 52 ± 3 fmol/g in non-induced rats, P<0.05) which was markedly lowered by AAA treatment (72 ± 6 fmol/g). Remarkably, in TGR with established hypertension, AAA also decreased SBP (from 187 ± 4 to 158 ± 4 mmHg, P<0.05) and exhibited organoprotective effects in addition to marked suppression of kidney ANG II levels. In conclusion, 20-HETE antagonist attenuated the development and largely reversed the established ANG II-dependent malignant hypertension, likely via suppression of intrarenal ANG II levels. This suggests that intrarenal ANG II activation by 20-HETE is important in the pathophysiology of this hypertension form.
- Keywords
- 20-hydroxyeicosatetraenoic acid, cytochrome p450 metabolites, malignant hypertension, renin-angiotensin system,
- MeSH
- Amides pharmacology MeSH
- Angiotensin II metabolism MeSH
- Antihypertensive Agents pharmacology MeSH
- Angiotensin II Type 1 Receptor Blockers pharmacology MeSH
- Cytochrome P-450 CYP1A1 genetics MeSH
- Hypertension, Malignant chemically induced drug therapy metabolism MeSH
- Indoles toxicity MeSH
- Hydroxyeicosatetraenoic Acids antagonists & inhibitors metabolism MeSH
- Kidney drug effects metabolism MeSH
- Rats, Transgenic MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- 20-hydroxy-5,8,11,14-eicosatetraenoic acid MeSH Browser
- Amides MeSH
- Angiotensin II MeSH
- Antihypertensive Agents MeSH
- Angiotensin II Type 1 Receptor Blockers MeSH
- Cytochrome P-450 CYP1A1 MeSH
- indole-3-carbinol MeSH Browser
- Indoles MeSH
- Hydroxyeicosatetraenoic Acids MeSH
OBJECTIVE: We evaluated the therapeutic effectiveness of a new, orally active epoxyeicosatrienoic acid analog (EET-A) in rats with angiotensin II (ANG II)-dependent malignant hypertension. METHODS: Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. EET-A treatment was started either simultaneously with I3C induction process (early treatment) or 10 days later during established hypertension (late treatment). Blood pressure (BP) (radiotelemetry), indices of renal and cardiac injury, and plasma and kidney levels of the components of the renin-angiotensin system (RAS) were determined. RESULTS: In I3C-induced hypertensive rats, early EET-A treatment attenuated BP increase (to 175 ± 3 versus 193 ± 4 mmHg, P < 0.05, on day 13), reduced albuminuria (15 ± 1 versus 28 ± 2 mg/24 h, P < 0.05), and cardiac hypertrophy as compared with untreated I3C-induced rats. This was associated with suppression of plasma and kidney ANG II levels (48 ± 6 versus 106 ± 9 and 122 ± 19 versus 346 ± 11 fmol ml or g, respectively, P < 0.05) and increases in plasma and kidney angiotensin (1-7) concentrations (84 ± 9 versus 37 ± 6 and 199 ± 12 versus 68 ± 9 fmol/ml or g, respectively, P < 0.05). Remarkably, late EET-A treatment did not lower BP or improve renal and cardiac injury; indices of RAS activity were not affected. CONCLUSION: The new, orally active EET-A attenuated the development of experimental ANG II-dependent malignant hypertension, likely via suppression of the hypertensiogenic axis and augmentation of the vasodilatory/natriuretic axis of RAS.
- MeSH
- Albuminuria drug therapy MeSH
- Angiotensin I metabolism MeSH
- Angiotensin II metabolism MeSH
- Time Factors MeSH
- Cytochrome P-450 CYP1A1 genetics MeSH
- Hypertension, Malignant chemically induced physiopathology prevention & control MeSH
- Indoles MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- 8,11,14-Eicosatrienoic Acid analogs & derivatives therapeutic use MeSH
- Kidney metabolism MeSH
- Peptide Fragments metabolism MeSH
- Rats, Transgenic MeSH
- Renin-Angiotensin System drug effects MeSH
- Renin genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- angiotensin I (1-7) MeSH Browser
- Angiotensin I MeSH
- Angiotensin II MeSH
- Cytochrome P-450 CYP1A1 MeSH
- indole-3-carbinol MeSH Browser
- Indoles MeSH
- 8,11,14-Eicosatrienoic Acid MeSH
- Peptide Fragments MeSH
- Ren2 protein, rat MeSH Browser
- Renin MeSH
Recent studies have shown that the long-term antihypertensive action of soluble epoxide hydrolase inhibition (sEH) in angiotensin-II (AngII)-dependent hypertension might be mediated by the suppression of intrarenal AngII levels. To test this hypothesis, we examined the effects of acute (2 days) and chronic (14 days) sEH inhibition on blood pressure (BP) in transgenic rats with inducible AngII-dependent hypertension. AngII-dependent malignant hypertension was induced by 10 days' dietary administration of indole-3-carbinol (I3C), a natural xenobiotic that activates the mouse renin gene in Cyp1a1-Ren-2 transgenic rats. BP was monitored by radiotelemetry. Acute and chronic sEH inhibition was achieved using cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid, given at doses of 0.3, 3, 13, 26, 60 and 130 mg/L in drinking water. At the end of experiments, renal concentrations of epoxyeicosatrienoic acids, their inactive metabolites dihydroxyeicosatrienoic acids and AngII were measured. Acute BP-lowering effects of sEH inhibition in I3C-induced rats was associated with a marked increase in renal epoxyeicosatrienoic acids to dihydroxyeicosatrienoic acids ratio and acute natriuresis. Chronic treatment with cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid in I3C-induced rats elicited dose-dependent persistent BP lowering associated with a significant reduction of plasma and kidney AngII levels. Our findings show that the acute BP-lowering effect of sEH inhibition in I3C-induced Cyp1a1-Ren-2 transgenic rats is mediated by a substantial increase in intrarenal epoxyeicosatrienoic acids and their natriuretic action without altering intrarenal renin-angiotensin system activity. Long-term antihypertensive action of cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy) benzoic acid in I3C-induced Cyp1a1-Ren-2 transgenic rats is mediated mostly by suppression of intrarenal AngII concentration.
- Keywords
- angiotensin-II, cytochrome P-450 epoxygenase, eicosanoids, epoxyeicosatrienoic acids, hypertension, soluble epoxide hydrolase,
- MeSH
- Angiotensin II metabolism MeSH
- Antihypertensive Agents pharmacology MeSH
- Cytochrome P-450 CYP1A1 metabolism MeSH
- Epoxide Hydrolases antagonists & inhibitors metabolism MeSH
- Hypertension drug therapy metabolism MeSH
- Indoles metabolism MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Kidney drug effects metabolism MeSH
- Mice MeSH
- Natriuresis drug effects MeSH
- Rats, Inbred F344 MeSH
- Rats, Transgenic MeSH
- Renin-Angiotensin System drug effects MeSH
- Renin metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Angiotensin II MeSH
- Antihypertensive Agents MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Epoxide Hydrolases MeSH
- indole-3-carbinol MeSH Browser
- Indoles MeSH
- Ren2 protein, rat MeSH Browser
- Renin MeSH
The aim of the present study was to evaluate the hypothesis that the antihypertensive effects of inhibition of soluble epoxide hydrolase (sEH) are mediated by increased intrarenal availability of epoxyeicosatrienoic acids (EETs), with consequent improvement in renal haemodynamic autoregulatory efficiency and the pressure-natriuresis relationship. Ren-2 transgenic rats (TGR), a model of angiotensin (Ang) II-dependent hypertension, and normotensive transgene-negative Hannover Sprague-Dawley (HanSD) rats were treated with the sEH inhibitor cis-4-(4-(3-adamantan-1-yl-ureido)cyclohexyloxy)benzoic acid (c-AUCB; 26 mg/L) for 48 h. Then, the effects on blood pressure (BP), autoregulation of renal blood flow (RBF) and glomerular filtration rate (GFR), and on the pressure-natriuresis relationship in response to stepwise reductions in renal arterial pressure (RAP) were determined. Treatment with c-AUCB did not significantly change BP, renal autoregulation or pressure-natriuresis in normotensive HanSD rats. In contrast, c-AUCB treatment significantly reduced BP, increased intrarenal bioavailability of EETs and significantly suppressed AngII levels in TGR. However, treatment with c-AUCB did not significantly improve the autoregulatory efficiency of RBF and GFR in response to reductions of RAP and to restore the blunted pressure-natriuresis relationship in TGR. Together, the data indicate that the antihypertensive actions of sEH inhibition in TGR are predominantly mediated via significant suppression of intrarenal renin-angiotensin system activity.
- MeSH
- Antihypertensive Agents pharmacology MeSH
- Benzoates pharmacology MeSH
- Down-Regulation drug effects MeSH
- Epoxide Hydrolases antagonists & inhibitors MeSH
- Glomerular Filtration Rate drug effects MeSH
- Hypertension physiopathology MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Kidney drug effects metabolism MeSH
- Urea analogs & derivatives pharmacology MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Transgenic MeSH
- Renal Circulation drug effects MeSH
- Renin-Angiotensin System drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- 4-(4-(3-adamantan-1-ylureido)cyclohexyloxy)benzoic acid MeSH Browser
- Antihypertensive Agents MeSH
- Benzoates MeSH
- Epoxide Hydrolases MeSH
- Urea MeSH
OBJECTIVE: The present study was performed to investigate in a model of malignant hypertension if the antihypertensive actions of soluble epoxide hydrolase (sEH) inhibition are nitric oxide (NO)-dependent. METHODS: ANG II-dependent malignant hypertension was induced through dietary administration for 3 days of the natural xenobiotic indole-3-carbinol (I3C) in Cyp1a1-Ren-2 transgenic rats. Blood pressure (BP) was monitored by radiotelemetry and treatment with the sEH inhibitor [cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyl-oxy]-benzoic acid (c-AUCB)] was started 48 h before administration of the diet containing I3C. In separate groups of rats, combined administration of the sEH inhibitor and the nonspecific NO synthase inhibitor [Nω-nitro-L-arginine methyl ester (L-NAME)] on the course of BP in I3C-induced and noninduced rats were evaluated. In addition, combined blockade of renin-angiotensin system (RAS) was superimposed on L-NAME administration in separate groups of rats. After 3 days of experimental protocols, the rats were prepared for renal functional studies and renal concentrations of epoxyeicosatrienoic acids (EETs) and their inactive metabolites dihydroxyeicosatrienoic acids (DHETEs) were measured. RESULTS: Treatment with c-AUCB increased the renal EETs/DHETEs ratio, attenuated the increases in BP, and prevented the decreases in renal function and the development of renal damage in I3C-induced Cyp1a1-Ren-2 rats. The BP lowering and renoprotective actions of the treatment with the sEH inhibitor c-AUCB were completely abolished by concomitant administration of L-NAME and not fully rescued by double RAS blockade without altering the increased EETs/DHETEs ratio. CONCLUSION: Our current findings indicate that the antihypertensive actions of sEH inhibition in this ANG II-dependent malignant form of hypertension are dependent on the interactions of endogenous bioavailability of EETs and NO.
- MeSH
- Angiotensin II physiology MeSH
- Antihypertensive Agents pharmacology therapeutic use MeSH
- Epoxide Hydrolases antagonists & inhibitors MeSH
- Hypertension drug therapy physiopathology MeSH
- Enzyme Inhibitors pharmacology MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Thiobarbituric Acid Reactive Substances metabolism MeSH
- Kidney drug effects physiopathology MeSH
- NG-Nitroarginine Methyl Ester administration & dosage pharmacology therapeutic use MeSH
- Rats, Transgenic MeSH
- Nitric Oxide Synthase antagonists & inhibitors MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Angiotensin II MeSH
- Antihypertensive Agents MeSH
- Epoxide Hydrolases MeSH
- Enzyme Inhibitors MeSH
- Thiobarbituric Acid Reactive Substances MeSH
- NG-Nitroarginine Methyl Ester MeSH
- Nitric Oxide Synthase MeSH