Nejvíce citovaný článek - PubMed ID 19633168
Auxin transport routes in plant development
Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379-402 (2020); Blackburn et al., Plant Physiol. 182, 1657-1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.
- Klíčová slova
- RALF1, auxin, biphasic regulation, cross-talk, root growth inhibition,
- MeSH
- Arabidopsis * metabolismus MeSH
- fosfotransferasy MeSH
- kořeny rostlin * růst a vývoj MeSH
- kyseliny indoloctové * metabolismus MeSH
- peptidové hormony * metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- At3g51550 protein, Arabidopsis MeSH Prohlížeč
- fosfotransferasy MeSH
- kyseliny indoloctové * MeSH
- peptidové hormony * MeSH
- proteiny huseníčku * MeSH
- RALF1 protein, Arabidopsis MeSH Prohlížeč
Directional root growth control is crucial for plant fitness. The degree of root growth deviation depends on several factors, whereby exogenous growth conditions have a profound impact. The perception of mechanical impedance by wild-type roots results in the modulation of root growth traits, and it is known that gravitropic stimulus influences distinct root movement patterns in concert with mechanoadaptation. Mutants with reduced shootward auxin transport are described as being numb towards mechanostimulus and gravistimulus, whereby different growth conditions on agar-supplemented medium have a profound effect on how much directional root growth and root movement patterns differ between wild types and mutants. To reduce the impact of unilateral mechanostimulus on roots grown along agar-supplemented medium, we compared the root movement of Col-0 and auxin resistant 1-7 in a root penetration assay to test how both lines adjust the growth patterns of evenly mechanostimulated roots. We combined the assay with the D-root system to reduce light-induced growth deviation. Moreover, the impact of sucrose supplementation in the growth medium was investigated because exogenous sugar enhances root growth deviation in the vertical direction. Overall, we observed a more regular growth pattern for Col-0 but evaluated a higher level of skewing of aux1-7 compared to the wild type than known from published data. Finally, the tracking of the growth rate of the gravistimulated roots revealed that Col-0 has a throttling elongation rate during the bending process, but aux1-7 does not.
- Klíčová slova
- AUX1, AUXIN-RESISTANT 1, D-root system, directional root growth, gravitropic response, mechanoadaptation, mechanostimulus, root elongation rate, root penetration assay, root skewing,
- Publikační typ
- časopisecké články MeSH
Auxin regulates the transcription of auxin-responsive genes by the TIR1/AFBs-Aux/IAA-ARF signaling pathway, and in this way facilitates plant growth and development. However, rapid, nontranscriptional responses to auxin that cannot be explained by this pathway have been reported. In this review, we focus on several examples of rapid auxin responses: (1) the triggering of changes in plasma membrane potential in various plant species and tissues, (2) inhibition of root growth, which also correlates with membrane potential changes, cytosolic Ca2+ spikes, and a rise of apoplastic pH, (3) the influence on endomembrane trafficking of PIN proteins and other membrane cargoes, and (4) activation of ROPs (Rho of plants) and their downstream effectors such as the cytoskeleton or vesicle trafficking. In most cases, the signaling pathway triggering the response is poorly understood. A role for the TIR1/AFBs in rapid root growth regulation is emerging, as well as the involvement of transmembrane kinases (TMKs) in the activation of ROPs. We discuss similarities and differences among these rapid responses and focus on their physiological significance, which remains an enigma in most cases.
- MeSH
- endocytóza MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové potenciály MeSH
- proteiny vázající GTP metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- auxin receptor, plant MeSH Prohlížeč
- kyseliny indoloctové MeSH
- proteiny vázající GTP MeSH
- receptory buněčného povrchu MeSH
- rostlinné proteiny MeSH
- vápník MeSH
A feature of arbuscular mycorrhiza is enhanced drought tolerance of host plants, although it is unclear whether host H+-ATPase activity and gene expression are involved in the physiological process. The present study aimed to investigate the effects of an arbuscular mycorrhizal fungus (AMF), Funneliformis mosseae, on H+-ATPase activity, and gene expression of trifoliate orange (Poncirus trifoliata) seedlings subjected to well-watered (WW) and drought stress (DS), together with the changes in leaf gas exchange, root morphology, soil pH value, and ammonium content. Soil drought treatment dramatically increased H+-ATPase activity of leaf and root, and AMF inoculation further strengthened the increased effect. A plasma membrane (PM) H+-ATPase gene of trifoliate orange, PtAHA2 (MW239123), was cloned. The PtAHA2 expression was induced by mycorrhization in leaves and roots and also up-regulated by drought treatment in leaves of AMF-inoculated seedlings and in roots of AMF- and non-AMF-inoculated seedlings. And, the induced expression of PtAHA2 under mycorrhization was more prominent under DS than under WW. Mycorrhizal plants also showed greater photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate and better root volume and diameter than non-mycorrhizal plants under DS. AMF inoculation significantly increased leaf and root ammonium content, especially under DS, whereas it dramatically reduced soil pH value. In addition, H+-ATPase activity was significantly positively correlated with ammonium contents in leaves and roots, and root H+-ATPase activity was significantly negatively correlated with soil pH value. Our results concluded that AMF stimulated H+-ATPase activity and PtAHA2 gene expression in response to DS, which resulted in great nutrient (e.g., ammonium) uptake and root growth, as well as low soil pH microenvironment.
- Klíčová slova
- H+-ATPase, citrus, mycorrhiza, proton pump, water deficit,
- Publikační typ
- časopisecké články MeSH
Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the β-subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in provascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab-dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule.
- Klíčová slova
- Arabidopsis, PIN1, PIN3, Rab, auxin transport, female gametophyte, funiculus, ovule, rab geranylgeranyl transferase,
- MeSH
- Arabidopsis * genetika MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * genetika MeSH
- pylová láčka MeSH
- vajíčko rostlin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.
- Klíčová slova
- PIN-FORMED 2, ROP2, ROS, TOR signaling, auxin, plant adaptation, polar cell elongation, root growth, root hair growth,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The proper distribution of the hormone auxin is essential for plant development. It is channeled by auxin efflux carriers of the PIN family, typically asymmetrically located on the plasma membrane (PM). Several studies demonstrated that some PIN transporters are also located at the endoplasmic reticulum (ER). From the PM-PINs, they differ in a shorter internal hydrophilic loop, which carries the most important structural features required for their subcellular localization, but their biological role is otherwise relatively poorly known. We discuss how ER-PINs take part in maintaining intracellular auxin homeostasis, possibly by modulating the internal levels of IAA; it seems that the exact identity of the metabolites downstream of ER-PINs is not entirely clear as well. We further review the current knowledge about their predicted structure, evolution and localization. Finally, we also summarize their role in plant development.
- Klíčová slova
- ER-PINs, PIN proteins, PIN5, PIN8, auxin metabolism, auxin transport,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping auxin into secretory vesicles (SVs), leading to its secretory release upon fusion with the PM. Which of these two mechanisms dominates is a matter of debate. Here, we addressed the issue with a mathematical modeling approach. We demonstrate that the efficiency of secretory transport depends on SV size, half-life of PINs on the PM, pH, exocytosis frequency and PIN density. 3D structured illumination microscopy (SIM) was used to determine PIN density on the PM. Combining this data with published values of the other parameters, we show that the transport activity of PINs in SVs would have to be at least 1000× greater than on the PM in order to produce a comparable macroscopic auxin transport. If both transport mechanisms operated simultaneously and PINs were equally active on SVs and PM, the contribution of secretion to the total auxin flux would be negligible. In conclusion, while secretory vesicle-mediated transport of auxin is an intriguing and theoretically possible model, it is unlikely to be a major mechanism of auxin transport in planta.
- Klíčová slova
- 3D-SIM microscopy, PIN transporters, auxin, mathematical modeling, polar auxin transport, secretion,
- MeSH
- Arabidopsis metabolismus MeSH
- biologické modely * MeSH
- biologický transport MeSH
- endocytóza MeSH
- kyseliny indoloctové metabolismus MeSH
- permeabilita buněčné membrány MeSH
- proteiny huseníčku metabolismus MeSH
- sekreční vezikuly metabolismus MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
- zelené fluorescenční proteiny MeSH
Plant hormones are master regulators of plant growth and development. Better knowledge of their spatial signaling and homeostasis (transport and metabolism) on the lowest structural levels (cellular and subcellular) is therefore crucial to a better understanding of developmental processes in plants. Recent progress in phytohormone analysis at the cellular and subcellular levels has greatly improved the effectiveness of isolation protocols and the sensitivity of analytical methods. This review is mainly focused on homeostasis of two plant hormone groups, auxins and cytokinins. It will summarize and discuss their tissue- and cell-type specific distributions at the cellular and subcellular levels.
- Klíčová slova
- auxin, cellular level, cytokinin, phytohormone metabolism, phytohormone transport, subcellular level,
- MeSH
- biologický transport MeSH
- cytokininy metabolismus MeSH
- fyziologie rostlin * MeSH
- homeostáza * MeSH
- intracelulární prostor metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- metabolické sítě a dráhy MeSH
- organely metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné buňky metabolismus MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
- Klíčová slova
- auxin, auxin distribution, auxin signalling, auxin transport, direct visualization, indirect visualization, receptor, sensor,
- MeSH
- Arabidopsis metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- vývoj rostlin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové MeSH