Nejvíce citovaný článek - PubMed ID 19692534
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
- Klíčová slova
- Aegilops biuncialis, Aegilops geniculata, chromosome flow sorting, flow karyotyping, genome dissecting,
- Publikační typ
- časopisecké články MeSH
Breeding of agricultural crops adapted to climate change and resistant to diseases and pests is hindered by a limited gene pool because of domestication and thousands of years of human selection. One way to increase genetic variation is chromosome-mediated gene transfer from wild relatives by cross hybridization. In the case of wheat (Triticum aestivum), the species of genus Aegilops are a particularly attractive source of new genes and alleles. However, during the evolution of the Aegilops and Triticum genera, diversification of the D-genome lineage resulted in the formation of diploid C, M, and U genomes of Aegilops. The extent of structural genome alterations, which accompanied their evolution and speciation, and the shortage of molecular tools to detect Aegilops chromatin hamper gene transfer into wheat. To investigate the chromosome structure and help develop molecular markers with a known physical position that could improve the efficiency of the selection of desired introgressions, we developed single-gene fluorescence in situ hybridization (FISH) maps for M- and U-genome progenitors, Aegilops comosa and Aegilops umbellulata, respectively. Forty-three ortholog genes were located on 47 loci in Ae. comosa and on 52 loci in Ae. umbellulata using wheat cDNA probes. The results obtained showed that M-genome chromosomes preserved collinearity with those of wheat, excluding 2 and 6M containing an intrachromosomal rearrangement and paracentric inversion of 6ML, respectively. While Ae. umbellulata chromosomes 1, 3, and 5U maintained collinearity with wheat, structural reorganizations in 2, 4, 6, and 7U suggested a similarity with the C genome of Aegilops markgrafii. To develop molecular markers with exact physical positions on chromosomes of Aegilops, the single-gene FISH data were validated in silico using DNA sequence assemblies from flow-sorted M- and U-genome chromosomes. The sequence similarity search of cDNA sequences confirmed 44 out of the 47 single-gene loci in Ae. comosa and 40 of the 52 map positions in Ae. umbellulata. Polymorphic regions, thus, identified enabled the development of molecular markers, which were PCR validated using wheat-Aegilops disomic chromosome addition lines. The single-gene FISH-based approach allowed the development of PCR markers specific for cytogenetically mapped positions on Aegilops chromosomes, substituting as yet unavailable segregating map. The new knowledge and resources will support the efforts for the introgression of Aegilops genes into wheat and their cloning.
Barley chromosome 5H, carrying important QTLs for plant adaptation and tolerance to abiotic stresses, is extremely instable in the wheat genetic background and is eliminated in the early generations of wheat-barley crosses. A spontaneous wheat-barley 5HS-7DS.7DL translocation was previously obtained among the progenies of the Mv9kr1 x Igri hybrid. The present work reports on the transfer of the 5HS-7DS.7DL translocation into a modern wheat cultivar, Mv Bodri, in order to use it in the wheat breeding program. The comparison of the hybridization bands of DNA repeats HvT01, pTa71, (GAA)n and the barley centromere-specific (AGGGAG)n in Igri barley and the 5HS-7DS.7DL translocation, together with the visualization of the barley chromatin made it possible to determine the size of the introgressed barley segment, which was approximately 74% of the whole 5HS. Of the 29 newly developed PCR markers, whose source ESTs were selected from the Genome Zipper of barley chromosome 5H, 23 were mapped in the introgressed 1-0.26 FL 5HS bin, three were located in the missing C-0.26 FL region, while three markers were specific for 5HL. The translocation breakpoint was flanked by markers Hv7502 and Hv3949. A comparison of the parental wheat cultivars and the wheat-barley introgression lines indicated that the presence of the translocation improved tillering ability in the Mv9kr1 and Mv Bodri genetic background. The similar or better yield components under high- or low-input cultivation environments, respectively, indicated that the 5HS-7DS.7DL translocation had little or no negative effect on yield components, making it a promising genotype to improve wheat genetic diversity. These results promise to accelerate functional genomic studies on barley chromosome 5H and to support pre-breeding and breeding research on wheat.
- MeSH
- chromatin genetika metabolismus MeSH
- chromozomy rostlin MeSH
- exprimované sekvenční adresy MeSH
- genetická vazba MeSH
- genetické markery MeSH
- genotyp MeSH
- hybridizace genetická MeSH
- ječmen (rod) genetika MeSH
- mapování chromozomů MeSH
- pšenice genetika MeSH
- translokace genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- genetické markery MeSH
BACKGROUND: Haynaldia villosa (H. villosa) has been recognized as a species potentially useful for wheat improvement. The availability of its genomic sequences will boost its research and application. RESULTS: In this work, the short arm of H. villosa chromosome 4V (4VS) was sorted by flow cytometry and sequenced using Illumina platform. About 170.6 Mb assembled sequences were obtained. Further analysis showed that repetitive elements accounted for about 64.6% of 4VS, while the coding fraction, which is corresponding to 1977 annotated genes, represented 1.5% of the arm. The syntenic regions of the 4VS were searched and identified on wheat group 4 chromosomes 4AL, 4BS, 4DS, Brachypodium chromosomes 1 and 4, rice chromosomes 3 and 11, and sorghum chromosomes 1, 5 and 8. Based on genome-zipper analysis, a virtual gene order comprising 735 gene loci on 4VS genome was built by referring to the Brachypodium genome, which was relatively consistent with the scaffold order determined for Ae. tauschii chromosome 4D. The homologous alleles of several cloned genes on wheat group 4 chromosomes including Rht-1 gene were identified. CONCLUSIONS: The sequences provided valuable information for mapping and positional-cloning genes located on 4VS, such as the wheat yellow mosaic virus resistance gene Wss1. The work on 4VS provided detailed insights into the genome of H. villosa, and may also serve as a model for sequencing the remaining parts of H. villosa genome.
- Klíčová slova
- Chromosome arm 4VS, Flow sorting, Genome zipper, Haynaldia villosa, Scaffold,
- MeSH
- chromozomy rostlin genetika MeSH
- druhová specificita MeSH
- genomika MeSH
- lipnicovité genetika MeSH
- mapování chromozomů MeSH
- pořadí genů genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- sekvenční analýza DNA * MeSH
- Publikační typ
- časopisecké články MeSH
Identification of causal mutations in barley and wheat is hampered by their large genomes and suppressed recombination. To overcome these obstacles, we have developed MutChromSeq, a complexity reduction approach based on flow sorting and sequencing of mutant chromosomes, to identify induced mutations by comparison to parental chromosomes. We apply MutChromSeq to six mutants each of the barley Eceriferum-q gene and the wheat Pm2 genes. This approach unambiguously identified single candidate genes that were verified by Sanger sequencing of additional mutants. MutChromSeq enables reference-free forward genetics in barley and wheat, thus opening up their pan-genomes to functional genomics.
- Klíčová slova
- Barley, Chromosome flow sorting, Gene cloning, MutChromSeq, Mutational genomics, Triticeae, Wheat,
- MeSH
- chromozomy rostlin * MeSH
- fenotyp MeSH
- ječmen (rod) genetika MeSH
- jednonukleotidový polymorfismus MeSH
- klonování DNA * MeSH
- mutace * MeSH
- pšenice genetika MeSH
- rostlinné geny * MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Making use of wheat chromosomal resources, we developed 11 gene-associated markers for the region of interest, which allowed reducing gene interval and spanning it by four BAC clones. Positional gene cloning and targeted marker development in bread wheat are hampered by high complexity and polyploidy of its nuclear genome. Aiming to clone a Russian wheat aphid resistance gene Dn2401 located on wheat chromosome arm 7DS, we have developed a strategy overcoming problems due to polyploidy and enabling efficient development of gene-associated markers from the region of interest. We employed information gathered by GenomeZipper, a synteny-based tool combining sequence data of rice, Brachypodium, sorghum and barley, and took advantage of a high-density linkage map of Aegilops tauschii. To ensure genome- and locus-specificity of markers, we made use of survey sequence assemblies of isolated wheat chromosomes 7A, 7B and 7D. Despite the low level of polymorphism of the wheat D subgenome, our approach allowed us to add in an efficient and cost-effective manner 11 new gene-associated markers in the Dn2401 region and narrow down the target interval to 0.83 cM. Screening 7DS-specific BAC library with the flanking markers revealed a contig of four BAC clones that span the Dn2401 region in wheat cultivar 'Chinese Spring'. With the availability of sequence assemblies and GenomeZippers for each of the wheat chromosome arms, the proposed strategy can be applied for focused marker development in any region of the wheat genome.
- MeSH
- býložravci MeSH
- chromozomy rostlin MeSH
- DNA primery MeSH
- DNA rostlinná genetika MeSH
- genetická vazba MeSH
- genetické markery MeSH
- genomika MeSH
- jednonukleotidový polymorfismus MeSH
- mapování chromozomů * MeSH
- mikrosatelitní repetice MeSH
- mšice * MeSH
- pšenice genetika MeSH
- rostlinné geny * MeSH
- syntenie MeSH
- umělé bakteriální chromozomy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rusko MeSH
- Názvy látek
- DNA primery MeSH
- DNA rostlinná MeSH
- genetické markery MeSH
BACKGROUND: The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS: The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS: Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.
- MeSH
- chromozomy rostlin MeSH
- DNA rostlinná analýza MeSH
- duplikace genu * MeSH
- fyzikální mapování chromozomů metody MeSH
- genová přestavba * MeSH
- kontigové mapování metody MeSH
- molekulární evoluce MeSH
- pšenice genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND: The number and complexity of repetitive elements varies between species, being in general most represented in those with larger genomes. Combining the flow-sorted chromosome arms approach to genome analysis with second generation DNA sequencing technologies provides a unique opportunity to study the repetitive portion of each chromosome, enabling comparisons among them. Additionally, different sequencing approaches may produce different depth of insight to repeatome content and structure. In this work we analyze and characterize the repetitive sequences of Triticum aestivum cv. Chinese Spring homeologous group 4 chromosome arms, obtained through Roche 454 and Illumina sequencing technologies, hereinafter marked by subscripts 454 and I, respectively. Repetitive sequences were identified with the RepeatMasker software using the interspersed repeat database mips-REdat_v9.0p. The input sequences consisted of our 4DS454 and 4DL454 scaffolds and 4ASI, 4ALI, 4BSI, 4BLI, 4DSI and 4DLI contigs, downloaded from the International Wheat Genome Sequencing Consortium (IWGSC). RESULTS: Repetitive sequences content varied from 55% to 63% for all chromosome arm assemblies except for 4DLI, in which the repeat content was 38%. Transposable elements, small RNA, satellites, simple repeats and low complexity sequences were analyzed. SSR frequency was found one per 24 to 27 kb for all chromosome assemblies except 4DLI, where it was three times higher. Dinucleotides and trinucleotides were the most abundant SSR repeat units. (GA)n/(TC)n was the most abundant SSR except for 4DLI where the most frequently identified SSR was (CCG/CGG)n. Retrotransposons followed by DNA transposons were the most highly represented sequence repeats, mainly composed of CACTA/En-Spm and Gypsy superfamilies, respectively. This whole chromosome sequence analysis allowed identification of three new LTR retrotransposon families belonging to the Copia superfamily, one belonging to the Gypsy superfamily and two TRIM retrotransposon families. Their physical distribution in wheat genome was analyzed by fluorescent in situ hybridization (FISH) and one of them, the Carmen retrotransposon, was found specific for centromeric regions of all wheat chromosomes. CONCLUSION: The presented work is the first deep report of wheat repetitive sequences analyzed at the chromosome arm level, revealing the first insight into the repeatome of T. aestivum chromosomes of homeologous group 4.
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná analýza MeSH
- fyzikální mapování chromozomů MeSH
- pšenice genetika MeSH
- repetitivní sekvence nukleových kyselin * MeSH
- sekvenční analýza DNA metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
BACKGROUND: Physical maps created from large insert DNA libraries, typically cloned in BAC vector, are valuable resources for map-based cloning and de novo genome sequencing. The maps are most useful if contigs of overlapping DNA clones are anchored to chromosome(s), and ordered along them using molecular markers. Here we present a novel approach for anchoring physical maps, based on sequencing three-dimensional pools of BAC clones from minimum tilling path. RESULTS: We used physical map of wheat chromosome arm 3DS to validate the method with two different DNA sequence datasets. The first comprised 567 genes ordered along the chromosome arm based on syntenic relationship of wheat with the sequenced genomes of Brachypodium, rice and sorghum. The second dataset consisted of 7,136 SNP-containing sequences, which were mapped genetically in Aegilops tauschii, the donor of the wheat D genome. Mapping of sequence reads from individual BAC pools to the first and the second datasets enabled unambiguous anchoring 447 and 311 3DS-specific sequences, respectively, or 758 in total. CONCLUSIONS: We demonstrate the utility of the novel approach for BAC contig anchoring based on mass parallel sequencing of three-dimensional pools prepared from minimum tilling path of physical map. The existing genetic markers as well as any other DNA sequence could be mapped to BAC clones in a single in silico experiment. The approach reduces significantly the cost and time needed for anchoring and is applicable to any genomic project involving the construction of anchored physical map.
Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information.
- Klíčová slova
- Chromosome 4D survey sequence, Gene annotation, Gene content, Synteny, Triticum aestivum, Virtual gene order,
- MeSH
- chromozomy rostlin * MeSH
- exprimované sekvenční adresy chemie MeSH
- mapování chromozomů MeSH
- molekulární sekvence - údaje MeSH
- pořadí genů * MeSH
- pšenice genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH