Nejvíce citovaný článek - PubMed ID 19714881
Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing, and localization
Angiosperm mature pollen represents a quiescent stage with a desiccated cytoplasm surrounded by a tough cell wall, which is resistant to the suboptimal environmental conditions and carries the genetic information in an intact stage to the female gametophyte. Post pollination, pollen grains are rehydrated, activated, and a rapid pollen tube growth starts, which is accompanied by a notable metabolic activity, synthesis of novel proteins, and a mutual communication with female reproductive tissues. Several angiosperm species (Arabidopsis thaliana, tobacco, maize, and kiwifruit) were subjected to phosphoproteomic studies of their male gametophyte developmental stages, mostly mature pollen grains. The aim of this review is to compare the available phosphoproteomic studies and to highlight the common phosphoproteins and regulatory trends in the studied species. Moreover, the pollen phosphoproteome was compared with root hair phosphoproteome to pinpoint the common proteins taking part in their tip growth, which share the same cellular mechanisms.
- Klíčová slova
- kinase motif, male gametophyte, phosphoproteomics, pollen tube, root hair, signal transduction,
- MeSH
- fosfoproteiny metabolismus MeSH
- opylení * MeSH
- proteom metabolismus MeSH
- proteomika * MeSH
- pylová láčka metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fosfoproteiny MeSH
- proteom MeSH
- rostlinné proteiny MeSH
ALBA DNA/RNA-binding proteins form an ancient family, which in eukaryotes diversified into two Rpp25-like and Rpp20-like subfamilies. In most studied model organisms, their function remains unclear, but they are usually associated with RNA metabolism, mRNA translatability and stress response. In plants, the enriched number of ALBA family members remains poorly understood. Here, we studied ALBA dynamics during reproductive development in Arabidopsis at the levels of gene expression and protein localization, both under standard conditions and following heat stress. In generative tissues, ALBA proteins showed the strongest signal in mature pollen where they localized predominantly in cytoplasmic foci, particularly in regions surrounding the vegetative nucleus and sperm cells. Finally, we demonstrated the involvement of two Rpp25-like subfamily members ALBA4 and ALBA6 in RNA metabolism in mature pollen supported by their co-localization with poly(A)-binding protein 3 (PABP3). Collectively, we demonstrated the engagement of ALBA proteins in male reproductive development and the heat stress response, highlighting the involvement of ALBA4 and ALBA6 in RNA metabolism, storage and/or translational control in pollen upon heat stress. Such dynamic re-localization of ALBA proteins in a controlled, developmentally and environmentally regulated manner, likely reflects not only their redundancy but also their possible functional diversification in plants.
- Klíčová slova
- ALBA, Arabidopsis thaliana, PABP3, confocal microscopy, expression analysis, flowering, heat stress, pollen development, protein localization,
- MeSH
- Arabidopsis embryologie metabolismus MeSH
- fyziologický stres genetika MeSH
- konfokální mikroskopie MeSH
- květy růst a vývoj MeSH
- poly(A)-vazebné proteiny metabolismus MeSH
- promotorové oblasti (genetika) genetika MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- pyl embryologie MeSH
- reakce na tepelný šok fyziologie MeSH
- regulace genové exprese u rostlin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- poly(A)-vazebné proteiny MeSH
- proteiny huseníčku MeSH
- proteiny vázající RNA MeSH
The nascent polypeptide-associated (NAC) complex was described in yeast as a heterodimer composed of two subunits, α and β, and was shown to bind to the nascent polypeptides newly emerging from the ribosomes. NAC function was widely described in yeast and several information are also available about its role in plants. The knock down of individual NAC subunit(s) led usually to a higher sensitivity to stress. In Arabidopsis thaliana genome, there are five genes encoding NACα subunit, and two genes encoding NACβ. Double homozygous mutant in both genes coding for NACβ was acquired, which showed a delayed development compared to the wild type, had abnormal number of flower organs, shorter siliques and greatly reduced seed set. Both NACβ genes were characterized in more detail-the phenotype of the double homozygous mutant was complemented by a functional NACβ copy. Then, both NACβ genes were localized to nuclei and cytoplasm and their promoters were active in many organs (leaves, cauline leaves, flowers, pollen grains, and siliques together with seeds). Since flowers were the most affected organs by nacβ mutation, the flower buds' transcriptome was identified by RNA sequencing, and their proteome by gel-free approach. The differential expression analyses of transcriptomic and proteomic datasets suggest the involvement of NACβ subunits in stress responses, male gametophyte development, and photosynthesis.
- Klíčová slova
- Arabidopsis thaliana, chaperone, flower bud proteome, flower bud transcriptome, male gametophyte, nascent polypeptide-associated complex,
- MeSH
- alely MeSH
- Arabidopsis fyziologie MeSH
- fenotyp MeSH
- geneticky modifikované rostliny MeSH
- homozygot MeSH
- klíčení MeSH
- květy fyziologie MeSH
- molekulární chaperony genetika metabolismus MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteomika metody MeSH
- regulace genové exprese u rostlin MeSH
- semena rostlinná MeSH
- transkriptom MeSH
- vývoj rostlin * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- molekulární chaperony MeSH
- nascent-polypeptide-associated complex MeSH Prohlížeč
- proteiny huseníčku MeSH
Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.
- MeSH
- polyribozomy genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- proteomika metody MeSH
- pyl genetika růst a vývoj metabolismus MeSH
- pylová láčka genetika růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- ribonukleoproteiny genetika metabolismus MeSH
- ribozomy genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stanovení celkové genové exprese metody MeSH
- tabák genetika růst a vývoj metabolismus MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH
- ribonukleoproteiny MeSH
- rostlinné proteiny MeSH
Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants.
- MeSH
- fylogeneze MeSH
- glukosyltransferasy genetika MeSH
- molekulární evoluce * MeSH
- proteiny huseníčku genetika MeSH
- pyl * MeSH
- rostlinné geny MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1,3-beta-glucan synthase MeSH Prohlížeč
- glukosyltransferasy MeSH
- proteiny huseníčku MeSH
- transkripční faktory MeSH
In tobacco, three sequence variants of the TERT gene have been described. We revealed unbalanced levels of TERT variant transcripts in vegetative tobacco tissues and enhanced TERT transcription and telomerase activity in reproductive tissues. Telomerase is a ribonucleoprotein complex responsible for the maintenance of telomeres, structures delimiting ends of linear eukaryotic chromosomes. In the Nicotiana tabacum (tobacco) allotetraploid plant, three sequence variants (paralogs) of the gene coding for the telomerase reverse transcriptase subunit (TERT) have been described, two of them derived from the maternal N. sylvestris genome (TERT_Cs, TERT_D) and one originated from the N. tomentosiformis paternal genome (TERT_Ct). In this work, we analyzed the transcription of TERT variants in correlation with telomerase activity in tobacco tissues. High and approximately comparable levels of TERT_Ct and TERT_Cs transcripts were detected in seedlings, roots, flower buds and leaves, while the transcript of the TERT_D variant was markedly underrepresented. Similarly, in N. sylvestris tissues, TERT_Cs transcript significantly predominated. A specific pattern of TERT transcripts was found in samples of tobacco pollen with the TERT_Cs variant clearly dominating particularly at the early stage of pollen development. Detailed analysis of TERT_C variants representation in functionally distinct fractions of pollen transcriptome revealed their prevalence in large ribonucleoprotein particles encompassing translationally silent mRNA; only a minority of TERT_Ct and TERT_Cs transcripts were localized in actively translated polysomes. Histones of the TERT_C chromatin were decorated predominantly with the euchromatin-specific epigenetic modification in both telomerase-positive and telomerase-negative tobacco tissues. We conclude that the existence and transcription pattern of tobacco TERT paralogs represents an interesting phenomenon and our results indicate its functional significance. Nicotiana species have again proved to be appropriate and useful model plants in telomere biology studies.
- Klíčová slova
- Gene sequence variant, Pollen, Polyploids, Telomerase, Telomere, Transcription,
- MeSH
- buněčné jádro genetika MeSH
- chromatinová imunoprecipitace MeSH
- euchromatin metabolismus MeSH
- genetická transkripce MeSH
- genetická variace * MeSH
- histony metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- orgánová specificita genetika MeSH
- polyribozomy metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- pylová láčka růst a vývoj MeSH
- regulace genové exprese u rostlin * MeSH
- tabák genetika MeSH
- telomerasa genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- euchromatin MeSH
- histony MeSH
- messenger RNA MeSH
- telomerasa MeSH
Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.
- Klíčová slova
- Flowering plants, Male gametophyte, Pollen development, Pollen tube growth,
- MeSH
- Magnoliopsida růst a vývoj metabolismus MeSH
- pyl růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved.
- MeSH
- fosfoproteiny chemie metabolismus MeSH
- kinetika MeSH
- proteomika metody MeSH
- pyl metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny chemie metabolismus MeSH
- tabák genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfoproteiny MeSH
- rostlinné proteiny MeSH
In our previous study we applied the Agilent 44K tobacco gene chip to introduce and analyze the tobacco male gametophyte transcriptome in mature pollen and 4h pollen tubes. Here we extended our analysis post-pollen mitosis II (PMII) by including a new data set obtained from more advanced stage of the ongoing progamic phase - pollen tubes cultivated in vitro for 24 h. Pollen mitosis II marks key events in the control of male gametophyte development, the production of two sperm cells. In bicellular species covering cca 70% of angiosperms including Nicotiana tabacum, PMII takes place after pollen germination in growing pollen tube. We showed the stable and even slightly increasing complexity of tobacco male gametophyte transcriptome over long period of progamic phase-24 h of pollen tube growth. We also demonstrated the ongoing transcription activity and specific transcript accumulation in post-PMII pollen tubes cultivated in vitro. In all, we have identified 320 genes (2.2%) that were newly transcribed at least after 4h of pollen tube cultivation in vitro. Further, 699 genes (4.8%) showed over 5-fold increased accumulation after the 24h of cultivation.
Male gametophyte development leading to the formation of a mature pollen grain is precisely controlled at various levels, including transcriptional, post-transcriptional and post-translational, during its whole progression. Transcriptomic studies exploiting genome-wide microarray technologies revealed the uniqueness of pollen transcriptome and the dynamics of early and late successive global gene expression programs. However, the knowledge of transcription regulation is still very limited. In this study, we focused on the identification of pollen-expressed transcription factor (TF) genes involved in the regulation of male gametophyte development. To achieve this, the reverse genetic approach was used. Seventy-four T-DNA insertion lines were screened, representing 49 genes of 21 TF families active in either early or late pollen development. In the screen, ten phenotype categories were distinguished, affecting various structural or functional aspects, including pollen abortion, presence of inclusions, variable pollen grain size, disrupted cell wall structure, cell cycle defects, and male germ unit organization. Thirteen lines were not confirmed to contain the T-DNA insertion. Among 61 confirmed lines, about half (29 lines) showed strong phenotypic changes (i.e., ≥ 25% aberrant pollen) including four lines that produced a remarkably high proportion (70-100%) of disturbed pollen. However, the remaining 32 lines exhibited mild defects or resembled wild-type appearance. There was no significant bias toward any phenotype category among early and late TF genes, nor, interestingly, within individual TF families. Presented results have a potential to serve as a basal information resource for future research on the importance of respective TFs in male gametophyte development.
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- DNA bakterií MeSH
- fenotyp MeSH
- multigenová rodina MeSH
- pyl růst a vývoj MeSH
- rostlinné geny MeSH
- transkripční faktory metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- T-DNA MeSH Prohlížeč
- transkripční faktory MeSH