Nejvíce citovaný článek - PubMed ID 19968994
Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all?
Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.
- MeSH
- biologická evoluce MeSH
- buněčná diferenciace genetika MeSH
- hem metabolismus MeSH
- lidé MeSH
- lipoproteiny HDL * metabolismus MeSH
- Trypanosoma brucei gambiense * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
- lipoproteiny HDL * MeSH
The closest relative of human pathogen Leishmania, the trypanosomatid Novymonas esmeraldas, harbors a bacterial endosymbiont "Candidatus Pandoraea novymonadis." Based on genomic data, we performed a detailed characterization of the metabolic interactions of both partners. While in many respects the metabolism of N. esmeraldas resembles that of other Leishmaniinae, the endosymbiont provides the trypanosomatid with heme, essential amino acids, purines, some coenzymes, and vitamins. In return, N. esmeraldas shares with the bacterium several nonessential amino acids and phospholipids. Moreover, it complements its carbohydrate metabolism and urea cycle with enzymes missing from the "Ca. Pandoraea novymonadis" genome. The removal of the endosymbiont from N. esmeraldas results in a significant reduction of the overall translation rate, reduced expression of genes involved in lipid metabolism and mitochondrial respiratory activity, and downregulation of several aminoacyl-tRNA synthetases, enzymes involved in the synthesis of some amino acids, as well as proteins associated with autophagy. At the same time, the genes responsible for protection against reactive oxygen species and DNA repair become significantly upregulated in the aposymbiotic strain of this trypanosomatid. By knocking out a component of its flagellum, we turned N. esmeraldas into a new model trypanosomatid that is amenable to genetic manipulation using both conventional and CRISPR-Cas9-mediated approaches. IMPORTANCENovymonas esmeraldas is a parasitic flagellate of the family Trypanosomatidae representing the closest insect-restricted relative of the human pathogen Leishmania. It bears symbiotic bacteria in its cytoplasm, the relationship with which has been established relatively recently and independently from other known endosymbioses in protists. Here, using the genome analysis and comparison of transcriptomic profiles of N. esmeraldas with and without the endosymbionts, we describe a uniquely complex cooperation between both partners on the biochemical level. We demonstrate that the removal of bacteria leads to a decelerated growth of N. esmeraldas, substantial suppression of many metabolic pathways, and increased oxidative stress. Our success with the genetic transformation of this flagellate makes it a new model trypanosomatid species that can be used for the dissection of mechanisms underlying the symbiotic relationships between protists and bacteria.
- Klíčová slova
- Leishmaniinae, Trypanosomatidae, bacterial endosymbiont, genomics, metabolism,
- MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- genom bakteriální * MeSH
- genomika MeSH
- symbióza genetika MeSH
- Trypanosoma klasifikace metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The names we give objects of research, to some extent, predispose our ways of thinking about them. Misclassifications of Oomycota, Microsporidia, Myxosporidia, and Helicosporidia have obviously affected not only their formal taxonomic names, but also the methods and approaches with which they have been investigated. Therefore, it is important to name biological entities with accurate terms in order to avoid discrepancies in researching them. The endosymbiotic origin of mitochondria and plastids is now the most accepted scenario for their evolution. Since it is apparent that there is no natural definitive border between bacteria and semiautonomous organelles, I propose that mitochondria and plastids should be called bacteria and classified accordingly, in the bacterial classification system. I discuss some consequences of this approach, including: i) the resulting "changes" in the abundances of bacteria, ii) the definitions of terms like microbiome or multicellularity, and iii) the concept of endosymbiotic domestication.
- Klíčová slova
- bacterium, domestication, endosymbiosis, eukaryote, evolution, microbiome, organelle,
- Publikační typ
- časopisecké články MeSH
The human parasite Trypanosoma brucei does not synthesize heme de novo and instead relies entirely on heme supplied by its vertebrate host or its insect vector, the tsetse fly. In the host bloodstream T. brucei scavenges heme via haptoglobin-hemoglobin (HpHb) receptor-mediated endocytosis occurring in the flagellar pocket. However, in the procyclic developmental stage, in which T. brucei is confined to the tsetse fly midgut, this receptor is apparently not expressed, suggesting that T. brucei takes up heme by a different, unknown route. To define this alternative route, we functionally characterized heme transporter TbHrg in the procyclic stage. RNAi-induced down-regulation of TbHrg in heme-limited culture conditions resulted in slower proliferation, decreased cellular heme, and marked changes in cellular morphology so that the cells resemble mesocyclic trypomastigotes. Nevertheless, the TbHrg KO developed normally in the tsetse flies at rates comparable with wild-type cells. T. brucei cells overexpressing TbHrg displayed up-regulation of the early procyclin GPEET and down-regulation of the late procyclin EP1, two proteins coating the T. brucei surface in the procyclic stage. Light microscopy of immunostained TbHrg indicated localization to the flagellar membrane, and scanning electron microscopy revealed more intense TbHrg accumulation toward the flagellar pocket. Based on these findings, we postulate that T. brucei senses heme levels via the flagellar TbHrg protein. Heme deprivation in the tsetse fly anterior midgut might represent an environmental stimulus involved in the transformation of this important human parasite, possibly through metabolic remodeling.
- Klíčová slova
- differentiation, flagellum, heme, import, parasite, procyclin, transporter, trypanosome,
- MeSH
- biologický transport MeSH
- down regulace MeSH
- flagella metabolismus MeSH
- hem metabolismus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- membránové transportní proteiny metabolismus MeSH
- mikroskopie elektronová rastrovací MeSH
- moucha tse-tse parazitologie MeSH
- proliferace buněk MeSH
- protozoální proteiny metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- RNA interference MeSH
- sekvence aminokyselin MeSH
- stadia vývoje MeSH
- transgeny MeSH
- Trypanosoma brucei brucei metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
- hemoglobin-haptoglobin receptor MeSH Prohlížeč
- membránové transportní proteiny MeSH
- protozoální proteiny MeSH
- receptory buněčného povrchu MeSH
Tetrapyrroles such as chlorophyll and heme are indispensable for life because they are involved in energy fixation and consumption, i.e. photosynthesis and oxidative phosphorylation. In eukaryotes, the tetrapyrrole biosynthetic pathway is shaped by past endosymbioses. We investigated the origins and predicted locations of the enzymes of the heme pathway in the chlorarachniophyte Bigelowiella natans, the cryptophyte Guillardia theta, the "green" dinoflagellate Lepidodinium chlorophorum, and three dinoflagellates with diatom endosymbionts ("dinotoms"): Durinskia baltica, Glenodinium foliaceum and Kryptoperidinium foliaceum. Bigelowiella natans appears to contain two separate heme pathways analogous to those found in Euglena gracilis; one is predicted to be mitochondrial-cytosolic, while the second is predicted to be plastid-located. In the remaining algae, only plastid-type tetrapyrrole synthesis is present, with a single remnant of the mitochondrial-cytosolic pathway, a ferrochelatase of G. theta putatively located in the mitochondrion. The green dinoflagellate contains a single pathway composed of mostly rhodophyte-origin enzymes, and the dinotoms hold two heme pathways of apparently plastidal origin. We suggest that heme pathway enzymes in B. natans and L. chlorophorum share a predominantly rhodophytic origin. This implies the ancient presence of a rhodophyte-derived plastid in the chlorarachniophyte alga, analogous to the green dinoflagellate, or an exceptionally massive horizontal gene transfer.
- MeSH
- biologická evoluce * MeSH
- biosyntetické dráhy * genetika MeSH
- Cryptophyta klasifikace genetika metabolismus MeSH
- Dinoflagellata klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- hem metabolismus MeSH
- porfobilinogensynthasa genetika metabolismus MeSH
- rozsivky klasifikace genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- tetrapyrroly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hem MeSH
- porfobilinogensynthasa MeSH
- tetrapyrroly MeSH
BACKGROUND: Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway-a core metabolic pathway in a wide range of organisms-is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. RESULTS: Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. CONCLUSION: We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba.
- Klíčová slova
- Endosymbiosis, Evolution, Heme, Kinetoplastea, Lateral gene transfer, Paramoeba pemaquidensis, Perkinsela, Prokinetoplastina,
- MeSH
- biologická evoluce MeSH
- Eukaryota klasifikace fyziologie MeSH
- fylogeneze MeSH
- hem metabolismus MeSH
- Kinetoplastida klasifikace genetika fyziologie MeSH
- přenos genů horizontální MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hem MeSH
Haem and iron homeostasis in most eukaryotic cells is based on a balanced flux between haem biosynthesis and haem oxygenase-mediated degradation. Unlike most eukaryotes, ticks possess an incomplete haem biosynthetic pathway and, together with other (non-haematophagous) mites, lack a gene encoding haem oxygenase. We demonstrated, by membrane feeding, that ticks do not acquire bioavailable iron from haemoglobin-derived haem. However, ticks require dietary haemoglobin as an exogenous source of haem since, feeding with haemoglobin-depleted serum led to aborted embryogenesis. Supplementation of serum with haemoglobin fully restored egg fertility. Surprisingly, haemoglobin could be completely substituted by serum proteins for the provision of amino-acids in vitellogenesis. Acquired haem is distributed by haemolymph carrier protein(s) and sequestered by vitellins in the developing oocytes. This work extends, substantially, current knowledge of haem auxotrophy in ticks and underscores the importance of haem and iron metabolism as rational targets for anti-tick interventions.
- Klíčová slova
- biochemistry, haem auxotrophy, haem oxygenase, haematophagy, infectious disease, iron metabolism, microbiology, ticks,
- MeSH
- fertilita MeSH
- hem metabolismus MeSH
- klíšťata metabolismus fyziologie MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
The co-infection cases involving dixenous Leishmania spp. (mostly of the L. donovani complex) and presumably monoxenous trypanosomatids in immunocompromised mammalian hosts including humans are well documented. The main opportunistic parasite has been identified as Leptomonas seymouri of the sub-family Leishmaniinae. The molecular mechanisms allowing a parasite of insects to withstand elevated temperature and substantially different conditions of vertebrate tissues are not understood. Here we demonstrate that L. seymouri is well adapted for the environment of the warm-blooded host. We sequenced the genome and compared the whole transcriptome profiles of this species cultivated at low and high temperatures (mimicking the vector and the vertebrate host, respectively) and identified genes and pathways differentially expressed under these experimental conditions. Moreover, Leptomonas seymouri was found to persist for several days in two species of Phlebotomus spp. implicated in Leishmania donovani transmission. Despite of all these adaptations, L. seymouri remains a predominantly monoxenous species not capable of infecting vertebrate cells under normal conditions.
- MeSH
- fyziologická adaptace fyziologie MeSH
- infekce prvoky kmene Euglenozoa genetika MeSH
- koinfekce mikrobiologie MeSH
- Leishmania donovani MeSH
- leishmanióza viscerální parazitologie MeSH
- modely nemocí na zvířatech MeSH
- polymerázová řetězová reakce MeSH
- protozoální geny MeSH
- Psychodidae mikrobiologie MeSH
- stadia vývoje MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- Trypanosomatina genetika růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
While the phylum Apicomplexa includes "only" several thousand described species of obligatory parasites of animals, it may in fact be the most specious group of parasitic protists with over a million species 1. The best known representatives are Plasmodium spp., Toxoplasma gondii and Cryptosporidium spp., which belong to the most important and widespread human parasites exacting an enormous disease burden. On the other hand, dinoflagellates and colpodellids, which are monophyletic with the apicomplexans, are ecologically highly significant, as they belong to the most abundant marine protists 2. As the common ancestor of these groups was most likely a free-living photosynthesizing protist, one wonders, which evolutionary forces contributed to the dramatic transition of some of its descendants into the arguably most successful intracellular parasites? Although a range of various processes and mechanisms contributed to this transition, most likely it also involved an acquisition of genes via horizontal gene transfer (HGT), which might have provided typical characteristics of a parasitic cell, such as immune escape, nutritional dependence and the capacity to invade other cells.
- Klíčová slova
- Apicomplexa, Chromera, Plasmodium, endosymbiont, horizontal gene transfer, oxidative stress, peroxiredoxin,
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.
- MeSH
- cytochromy b5 chemie metabolismus MeSH
- cytoplazma metabolismus MeSH
- Giardia chemie metabolismus MeSH
- hem metabolismus MeSH
- molekulární sekvence - údaje MeSH
- protozoální proteiny chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytochromy b5 MeSH
- hem MeSH
- protozoální proteiny MeSH