Nejvíce citovaný článek - PubMed ID 21893250
S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.
- Klíčová slova
- S-nitrosation, denitrosation, nitric oxide, plant redox signaling, reactive nitrogen species, thioredoxin, thioredoxin reductase,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In plants, there is a complex and multilevel network of the antioxidative system (AOS) operating to counteract harmful reactive species (RS), the foremost important of which are reactive oxygen species (ROS), and maintain homeostasis within the cell. Specific AOSs for plant cells are, first and foremost, enzymes of the glutathione-ascorbate cycle (Asc-GSH), followed by phenolic compounds and lipophilic antioxidants like carotenoids and tocopherols. Evidence that plant cells have excellent antioxidative defense systems is their ability to survive at H2O2 concentrations incompatible with animal cell life. For the survival of stressed plants, it is of particular importance that AOS cooperate and participate in redox reactions, therefore, providing better protection and regeneration of the active reduced forms. Considering that plants abound in antioxidant compounds, and humans are not predisposed to synthesize the majority of them, new fields of research have emerged. Antioxidant potential of plant compounds has been exploited for anti-aging formulations preparation, food fortification and preservation but also in designing new therapies for diseases with oxidative stress implicated in etiology.
- Klíčová slova
- antioxidative defence system, cell, oxidative stress, plants, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.
- Klíčová slova
- S-(hydroxymethyl)glutathione, S-nitrosation, S-nitrosoglutathione reductase, S-nitrosothiols, nitric oxide,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Resistant Lactuca spp. genotypes can efficiently modulate levels of S-nitrosothiols as reactive nitrogen species derived from nitric oxide in their defence mechanism against invading biotrophic pathogens including lettuce downy mildew. S-Nitrosylation belongs to principal signalling pathways of nitric oxide in plant development and stress responses. Protein S-nitrosylation is regulated by S-nitrosoglutathione reductase (GSNOR) as a key catabolic enzyme of S-nitrosoglutathione (GSNO), the major intracellular S-nitrosothiol. GSNOR expression, level and activity were studied in leaves of selected genotypes of lettuce (Lactuca sativa) and wild Lactuca spp. during interactions with biotrophic mildews, Bremia lactucae (lettuce downy mildew), Golovinomyces cichoracearum (lettuce powdery mildew) and non-pathogen Pseudoidium neolycopersici (tomato powdery mildew) during 168 h post inoculation (hpi). GSNOR expression was increased in all genotypes both in the early phase at 6 hpi and later phase at 72 hpi, with a high increase observed in L. sativa UCDM2 responses to all three pathogens. GSNOR protein also showed two-phase increase, with highest changes in L. virosa-B. lactucae and L. sativa cv. UCDM2-G. cichoracearum pathosystems, whereas P. neolycopersici induced GSNOR protein at 72 hpi in all genotypes. Similarly, a general pattern of modulated GSNOR activities in response to biotrophic mildews involves a two-phase increase at 6 and 72 hpi. Lettuce downy mildew infection caused GSNOR activity slightly increased only in resistant L. saligna and L. virosa genotypes; however, all genotypes showed increased GSNOR activity both at 6 and 72 hpi by lettuce powdery mildew. We observed GSNOR-mediated decrease of S-nitrosothiols as a general feature of Lactuca spp. response to mildew infection, which was also confirmed by immunohistochemical detection of GSNOR and GSNO in infected plant tissues. Our results demonstrate that GSNOR is differentially modulated in interactions of susceptible and resistant Lactuca spp. genotypes with fungal mildews and uncover the role of S-nitrosylation in molecular mechanisms of plant responses to biotrophic pathogens.
- Klíčová slova
- Bremia lactucae, Golovinomyces cichoracearum, Lettuce downy mildew, Lettuce powdery mildew, Nitric oxide, Pseudoidium neolycopersici,
- MeSH
- aldehydoxidoreduktasy metabolismus MeSH
- konfokální mikroskopie MeSH
- nemoci rostlin mikrobiologie MeSH
- odolnost vůči nemocem fyziologie MeSH
- oomycety patogenita MeSH
- polymerázová řetězová reakce MeSH
- regulace genové exprese u rostlin MeSH
- S-nitrosothioly metabolismus MeSH
- salát (hlávkový) enzymologie fyziologie MeSH
- western blotting MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehydoxidoreduktasy MeSH
- formaldehyde dehydrogenase, glutathione-independent MeSH Prohlížeč
- S-nitrosothioly MeSH