Nejvíce citovaný článek - PubMed ID 23543716
The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell
Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.
- Klíčová slova
- HelD/HelR, RNA polymerase, antibiotics, bacteria, resistance, rifampicin,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria * genetika metabolismus MeSH
- bakteriální léková rezistence MeSH
- DNA řízené RNA-polymerasy genetika metabolismus MeSH
- DNA MeSH
- rifampin * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- DNA řízené RNA-polymerasy MeSH
- DNA MeSH
- rifampin * MeSH
Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) is a class of biologically important proteins exhibiting specific biophysical characteristics. They lack a hydrophobic core, and their conformational behavior is strongly influenced by electrostatic interactions. IDPs and IDRs are highly dynamic, and a characterization of the motions of IDPs and IDRs is essential for their physically correct description. NMR together with molecular dynamics simulations are the methods best suited to such a task because they provide information about dynamics of proteins with atomistic resolution. Here, we present a study of motions of a disordered C-terminal domain of the delta subunit of RNA polymerase from Bacillus subtilis. Positively and negatively charged residues in the studied domain form transient electrostatic contacts critical for the biological function. Our study is focused on investigation of ps-ns dynamics of backbone of the delta subunit based on analysis of amide 15N NMR relaxation data and molecular dynamics simulations. In order to extend an informational content of NMR data to lower frequencies, which are more sensitive to slower motions, we combined standard (high-field) NMR relaxation experiments with high-resolution relaxometry. Altogether, we collected data reporting the relaxation at 12 different magnetic fields, resulting in an unprecedented data set. Our results document that the analysis of such data provides a consistent description of dynamics and confirms the validity of so far used protocols of the analysis of dynamics of IDPs also for a partially folded protein. In addition, the potential to access detailed description of motions at the timescale of tens of ns with the help of relaxometry data is discussed. Interestingly, in our case, it appears to be mostly relevant for a region involved in the formation of temporary contacts within the disordered region, which was previously proven to be biologically important.
- MeSH
- amidy MeSH
- DNA řízené RNA-polymerasy chemie MeSH
- konformace proteinů MeSH
- magnetická rezonanční spektroskopie MeSH
- simulace molekulární dynamiky MeSH
- vnitřně neuspořádané proteiny * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amidy MeSH
- DNA řízené RNA-polymerasy MeSH
- vnitřně neuspořádané proteiny * MeSH
Intrinsically disordered proteins are ubiquitous throughout all known proteomes, playing essential roles in all aspects of cellular and extracellular biochemistry. To understand their function, it is necessary to determine their structural and dynamic behavior and to describe the physical chemistry of their interaction trajectories. Nuclear magnetic resonance is perfectly adapted to this task, providing ensemble averaged structural and dynamic parameters that report on each assigned resonance in the molecule, unveiling otherwise inaccessible insight into the reaction kinetics and thermodynamics that are essential for function. In this review, we describe recent applications of NMR-based approaches to understanding the conformational energy landscape, the nature and time scales of local and long-range dynamics and how they depend on the environment, even in the cell. Finally, we illustrate the ability of NMR to uncover the mechanistic basis of functional disordered molecular assemblies that are important for human health.
- MeSH
- konformace proteinů MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- termodynamika MeSH
- vnitřně neuspořádané proteiny * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- vnitřně neuspořádané proteiny * MeSH
RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase-α, β, β'. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the β or β' subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.
- MeSH
- Bacillus subtilis enzymologie genetika MeSH
- bakteriální geny MeSH
- delece genu MeSH
- DNA řízené RNA-polymerasy chemie genetika metabolismus MeSH
- duplikace genu MeSH
- endoribonukleasy genetika fyziologie MeSH
- genetická transkripce MeSH
- homeostáza MeSH
- messenger RNA metabolismus MeSH
- molekulární evoluce MeSH
- mutace MeSH
- suprese genetická MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA řízené RNA-polymerasy MeSH
- endoribonukleasy MeSH
- messenger RNA MeSH
The exponential increase in the number of conducted studies combined with the development of sequencing methods have led to an enormous accumulation of partially processed experimental data in the past two decades. Here, we present an approach using literature-mined data complemented with gene expression kinetic modeling and promoter sequence analysis. This approach allowed us to identify the regulon of Bacillus subtilis sigma factor SigB of RNA polymerase (RNAP) specifically expressed during germination and outgrowth. SigB is critical for the cell's response to general stress but is also expressed during spore germination and outgrowth, and this specific regulon is not known. This approach allowed us to (i) define a subset of the known SigB regulon controlled by SigB specifically during spore germination and outgrowth, (ii) identify the influence of the promoter sequence binding motif organization on the expression of the SigB-regulated genes, and (iii) suggest additional sigma factors co-controlling other SigB-dependent genes. Experiments then validated promoter sequence characteristics necessary for direct RNAP-SigB binding. In summary, this work documents the potential of computational approaches to unravel new information even for a well-studied system; moreover, the study specifically identifies the subset of the SigB regulon, which is activated during germination and outgrowth.
- Klíčová slova
- Bacillus subtilis, SigB, computational modeling, gene regulatory networks, promoter sequence analysis,
- Publikační typ
- časopisecké články MeSH
Biomolecular force fields optimized for globular proteins fail to properly reproduce properties of intrinsically disordered proteins. In particular, parameters of the water model need to be modified to improve applicability of the force fields to both ordered and disordered proteins. Here, we compared performance of force fields recommended for intrinsically disordered proteins in molecular dynamics simulations of three proteins differing in the content of ordered and disordered regions (two proteins consisting of a well-structured domain and of a disordered region with and without a transient helical motif and one disordered protein containing a region of increased helical propensity). The obtained molecular dynamics trajectories were used to predict measurable parameters, including radii of gyration of the proteins and chemical shifts, residual dipolar couplings, paramagnetic relaxation enhancement, and NMR relaxation data of their individual residues. The predicted quantities were compared with experimental data obtained within this study or published previously. The results showed that the NMR relaxation parameters, rarely used for benchmarking, are particularly sensitive to the choice of force-field parameters, especially those defining the water model. Interestingly, the TIP3P water model, leading to an artificial structural collapse, also resulted in unrealistic relaxation properties. The TIP4P-D water model, combined with three biomolecular force-field parameters for the protein part, significantly improved reliability of the simulations. Additional analysis revealed only one particular force field capable of retaining the transient helical motif observed in NMR experiments. The benchmarking protocol used in our study, being more sensitive to imperfections than the commonly used tests, is well suited to evaluate the performance of newly developed force fields.
Improving our understanding of nanosecond motions in disordered proteins requires the enhanced sampling of the spectral density function obtained from relaxation at low magnetic fields. High-resolution relaxometry and two-field NMR measurements of relaxation have, so far, only been based on the recording of one- or two-dimensional spectra, which provide insufficient resolution for challenging disordered proteins. Here, we introduce a 3D-HNCO-based two-field NMR experiment for measurements of protein backbone [Formula: see text] amide longitudinal relaxation rates. The experiment provides accurate longitudinal relaxation rates at low field (0.33 T in our case) preserving the resolution and sensitivity typical for high-field NMR spectroscopy. Radiofrequency pulses applied on six different radiofrequency channels are used to manipulate the spin system at both fields. The experiment was demonstrated on the C-terminal domain of [Formula: see text] subunit of RNA polymerase from Bacillus subtilis, a protein with highly repetitive amino-acid sequence and very low dispersion of backbone chemical shifts.
- Klíčová slova
- Dynamics, High-resolution relaxometry, Intrinsically disordered proteins, Non-uniform sampling, Nuclear magnetic resonance, Relaxation,
- MeSH
- Bacillus subtilis enzymologie MeSH
- bakteriální proteiny chemie MeSH
- DNA řízené RNA-polymerasy chemie MeSH
- nukleární magnetická rezonance biomolekulární * MeSH
- rekombinantní proteiny chemie MeSH
- vnitřně neuspořádané proteiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA řízené RNA-polymerasy MeSH
- rekombinantní proteiny MeSH
- vnitřně neuspořádané proteiny MeSH
The σI sigma factor from Bacillus subtilis is a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI Further analysis revealed that the majority of these genes were affected indirectly by σI The σI regulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (the dhb and yku operons) are involved in iron metabolism. The involvement of σI in iron metabolism was confirmed phenotypically. Next, we set up an in vitro transcription system and defined and experimentally validated the promoter sequence logo that, in addition to -35 and -10 regions, also contains extended -35 and -10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organism B. subtilisIMPORTANCE In bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σI regulon from the industrially important model Gram-positive bacterium Bacillus subtilis We reveal that σI affects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of the B. subtilis transcription machinery.
- Klíčová slova
- RNA-seq, RNAP, iron metabolism, promoter, sigma factor,
- MeSH
- Bacillus subtilis genetika MeSH
- bakteriální proteiny genetika metabolismus MeSH
- DNA řízené RNA-polymerasy genetika MeSH
- genetická transkripce * MeSH
- operon MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u bakterií * MeSH
- regulon MeSH
- sigma faktor genetika MeSH
- transkriptom MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA řízené RNA-polymerasy MeSH
- sigma faktor MeSH
- železo MeSH
Bacterial RNA polymerase (RNAP) requires σ factors to recognize promoter sequences. Domain 1.1 of primary σ factors (σ1.1) prevents their binding to promoter DNA in the absence of RNAP, and when in complex with RNAP, it occupies the DNA-binding channel of RNAP. Currently, two 3D structures of σ1.1 are available: from Escherichia coli in complex with RNAP and from T. maritima solved free in solution. However, these two structures significantly differ, and it is unclear whether this difference is due to an altered conformation upon RNAP binding or to differences in intrinsic properties between the proteins from these two distantly related species. Here, we report the solution structure of σ1.1 from the Gram-positive bacterium Bacillus subtilis We found that B. subtilis σ1.1 is highly compact because of additional stabilization not present in σ1.1 from the other two species and that it is more similar to E. coli σ1.1. Moreover, modeling studies suggested that B. subtilis σ1.1 requires minimal conformational changes for accommodating RNAP in the DNA channel, whereas T. maritima σ1.1 must be rearranged to fit therein. Thus, the mesophilic species B. subtilis and E. coli share the same σ1.1 fold, whereas the fold of σ1.1 from the thermophile T. maritima is distinctly different. Finally, we describe an intriguing similarity between σ1.1 and δ, an RNAP-associated protein in B. subtilis, bearing implications for the so-far unknown binding site of δ on RNAP. In conclusion, our results shed light on the conformational changes of σ1.1 required for its accommodation within bacterial RNAP.
- Klíčová slova
- Bacillus, RNA polymerase, molecular modeling, nuclear magnetic resonance (NMR), protein structure, transcription initiation factor,
- MeSH
- Bacillus subtilis metabolismus MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- DNA bakterií chemie metabolismus MeSH
- DNA řízené RNA-polymerasy chemie genetika metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- izotopy dusíku MeSH
- izotopy uhlíku MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- konzervovaná sekvence MeSH
- molekulární modely * MeSH
- peptidové fragmenty chemie genetika metabolismus MeSH
- podjednotky proteinů MeSH
- rekombinantní proteiny chemie metabolismus MeSH
- sbalování proteinů MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- sigma faktor chemie genetika metabolismus MeSH
- stabilita proteinů MeSH
- strukturní homologie proteinů MeSH
- Thermotoga maritima enzymologie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA bakterií MeSH
- DNA řízené RNA-polymerasy MeSH
- izotopy dusíku MeSH
- izotopy uhlíku MeSH
- peptidové fragmenty MeSH
- podjednotky proteinů MeSH
- rekombinantní proteiny MeSH
- sigma faktor MeSH
DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription.
- MeSH
- Bacillus subtilis enzymologie MeSH
- deoxyribonukleotidy biosyntéza chemie MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- DNA chemie metabolismus MeSH
- Escherichia coli enzymologie MeSH
- genetická transkripce * MeSH
- genetické matrice MeSH
- konformace nukleové kyseliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deoxyribonukleotidy MeSH
- DNA řízené RNA-polymerasy MeSH
- DNA MeSH