Most cited article - PubMed ID 23782691
Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5
The evolution of proteins is primarily driven by the combinatorial assembly of a limited set of pre-existing modules known as protein domains. This modular architecture not only supports the diversity of natural proteins but also provides a robust strategy for protein engineering, enabling the design of artificial proteins with enhanced or novel functions for various industrial applications. Among these functions, oligomerization plays a crucial role in enhancing protein activity, such as by increasing the binding capacity of antibodies. To investigate the potential of engineering oligomerization, we examined the transferability of the sequence domain encoded by exon 5 (Ex5), which was originally responsible for the oligomerization of ameloblastin (AMBN). We designed a two-domain protein composed of Ex5 in combination with a monomeric, globular, and highly stable protein, specifically calmodulin (CaM). CaM represents the opposite protein character to AMBN, which is highly disordered and has a dynamic character. This engineered protein, termed eCaM, successfully acquired an oligomeric function, inducing self-assembly under specific conditions. Biochemical and biophysical analyses revealed that the oligomerization of eCaM is both concentration- and time-dependent, with the process being reversible upon dilution. Furthermore, mutating a key oligomerization residue within Ex5 abolished the self-assembly of eCaM, confirming the essential role of the Ex5 motif in driving oligomerization. Our findings demonstrate that the oligomerization properties encoded by Ex5 can be effectively transferred to a new protein context, though the positioning of Ex5 within the protein structure is critical. This work highlights the potential of enhancing monomeric proteins with oligomeric functions, paving the way for industrial applications and the development of proteins with tailored properties.
- Publication type
 - Journal Article MeSH
 
Ameloblastin is a protein in biomineralization of tooth enamel. However recent results indicate that this is probably not its only role in an organism. Enamel matrix formation represents a complex process enabled via specific crosslinking of two proteins - the most abundant amelogenin and the ameloblastin (AMBN). The human AMBN (hAMBN) gene possesses 13 protein coding exons with alternatively spliced transcripts and the longest isoform about 447 amino acid residues. It has been described that AMBN molecules in vitro assemble into oligomers via a sequence encoded by exon 5. Enamel is formed by the processing of enamel proteins by two specific proteases - enamelysin (MMP-20) and kallikrein 4 (KLK-4). The scaffold made of AMEL and non-amelogenin proteins is cleaved and removed from the developed tooth enamel. The hAMBN is expressed in two isoforms (ISO I and II), which could lead to their different utilization determined by distinct proteolytic profiles. In this study, we compared proteolytic profiles of both isoforms of hAMBN expressed in E. coli after proteolysis by MMP-20, KLK-4, and their 1:2 mixture. Proteolysis products were analysed and cleavage sites were identified by mass spectrometry. The proteolytic profiles of two AMBN isoforms showed different results, although we have to determine that the analysed AMBN was not post-translationally modified as expressed in prokaryotic cells. These results may lead to the suggestion of potentially divergent roles of AMBN isoforms cleavage products in various cell signalling pathways such as calcium buffering or signalling cascades.
- Keywords
 - Ameloblastin, Enzymatic cleavage products, KLK-4, MMP-20, Proteolytic analysis,
 - Publication type
 - Journal Article MeSH
 
Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.
- MeSH
 - Ameloblasts metabolism MeSH
 - Amelogenesis Imperfecta * complications immunology MeSH
 - Antigens immunology metabolism MeSH
 - Polyendocrinopathies, Autoimmune * complications immunology MeSH
 - Autoantibodies * immunology MeSH
 - Celiac Disease * complications immunology MeSH
 - Immunoglobulin A immunology MeSH
 - Humans MeSH
 - AIRE Protein deficiency MeSH
 - Proteins immunology metabolism MeSH
 - Intestines immunology metabolism MeSH
 - Dental Enamel immunology metabolism MeSH
 - Check Tag
 - Humans MeSH
 - Publication type
 - Journal Article MeSH
 - Research Support, Non-U.S. Gov't MeSH
 - Names of Substances
 - AIRE protein, human MeSH Browser
 - Antigens MeSH
 - Autoantibodies * MeSH
 - Immunoglobulin A MeSH
 - AIRE Protein MeSH
 - Proteins MeSH
 
OBJECTIVES: Dental caries is a widespread multifactorial disease, caused by the demineralization of hard dental tissues. Susceptibility to dental caries is partially genetically conditioned; this study was aimed at finding an association of selected single nucleotide polymorphisms (SNPs) in genes encoding proteins involved in amelogenesis with this disease in children. MATERIALS AND METHODS: In this case-control study, 15 SNPs in ALOX15, AMBN, AMELX, KLK4, TFIP11, and TUFT1 genes were analyzed in 150 children with primary dentition and 611 children with permanent teeth with/without dental caries from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) cohort. RESULTS: Dental caries in primary dentition was associated with SNPs in AMELX (rs17878486) and KLK4 (rs198968, rs2242670), and dental caries in permanent dentition with SNPs in AMELX (rs17878486) and KLK4 (rs2235091, rs2242670, rs2978642), (p ≤ 0.05). No significant differences between cases and controls were observed in the allele or genotype frequencies of any of the selected SNPs in ALOX15, AMBN, TFIP11, and TUFT1 genes (p > 0.05). Some KLK4 haplotypes were associated with dental caries in permanent dentition (p ≤ 0.05). CONCLUSIONS: Based on this study, we found that although the SNPs in AMELX and KLK4 are localized in intronic regions and their functional significance has not yet been determined, they are associated with susceptibility to dental caries in children. CLINICAL RELEVANCE: AMELX and KLK4 variants could be considered in the risk assessment of dental caries, especially in permanent dentition, in the European Caucasian population.
- Keywords
 - Amelogenin, Dental caries, Gene polymorphism, Kallikrein 4, Tooth morphology,
 - MeSH
 - Amelogenesis * genetics MeSH
 - Amelogenin genetics MeSH
 - Child MeSH
 - Humans MeSH
 - Longitudinal Studies MeSH
 - Case-Control Studies MeSH
 - Dental Caries * genetics epidemiology MeSH
 - Check Tag
 - Child MeSH
 - Humans MeSH
 - Publication type
 - Journal Article MeSH
 - Names of Substances
 - Amelogenin MeSH
 
Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel-the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN-its oligomerization ability-is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.
- Keywords
 - ameloblastin, biomineralization, calcium binding, intrinsically disordered protein (IDPs), oligomerization,
 - MeSH
 - Models, Biological MeSH
 - Hydrodynamics MeSH
 - Humans MeSH
 - Protein Multimerization MeSH
 - Protein Isoforms MeSH
 - Calcium-Binding Proteins chemistry metabolism MeSH
 - Dental Enamel Proteins chemistry metabolism MeSH
 - Spectrum Analysis MeSH
 - Temperature MeSH
 - Calcium metabolism MeSH
 - Protein Binding MeSH
 - Intrinsically Disordered Proteins metabolism MeSH
 - Check Tag
 - Humans MeSH
 - Publication type
 - Journal Article MeSH
 - Names of Substances
 - AMBN protein, human MeSH Browser
 - Protein Isoforms MeSH
 - Calcium-Binding Proteins MeSH
 - Dental Enamel Proteins MeSH
 - Calcium MeSH
 - Intrinsically Disordered Proteins MeSH
 
OBJECTIVE: Transcriptional regulatory elements in the ameloblastin (AMBN) promoter indicate that adipogenesis may influence its expression. The objective here was to investigate if AMBN is expressed in adipose tissue, and have a role during differentiation of adipocytes. DESIGN: AMBN expression was examined in adipose tissue and adipocytes by real-time PCR and ELISA. Distribution of ameloblastin was investigated by immunofluorescence in sections of human subcutaneous adipose tissue. The effect of recombinant proteins resembling AMBN and its processed products on proliferation of primary human pre-adipocytes and murine 3T3-L1 cell lines was measured by [3H]-thymidine incorporation. The effect on adipocyte differentiation was evaluated by the expression profile of the adipogenic markers PPARγ and leptin, and the content of lipids droplets (Oil-Red-O staining). RESULTS: AMBN was found to be expressed in human adipose tissue, human primary adipocytes, and in 3T3-L1 cells. The C-terminus of the AMBN protein and a 45 bp shorter splice variant was identified in human subcutaneous adipose tissue. The expression of AMBN was found to increase four-fold during differentiation of 3T3-L1 cells. Administration of recombinant AMBN reduced the proliferation, and enhanced the expression of PPARγ and leptin in 3T3-L1 and human pre-adipocytes, respectively. CONCLUSIONS: The AMBN C-terminus variant was identified in adipocytes. This variant may be encoded from a short splice variant. Increased expression of AMBN during adipogenesis and its effect on adipogenic factors suggests that AMBN also has a role in adipocyte development.
- Keywords
 - Biochemistry, Cell biology, Molecular biology, Physiology,
 - Publication type
 - Journal Article MeSH
 
Ameloblastin (AMBN), an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2) and protein kinase A (PKA) and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization.
- Keywords
 - Ca2+- binding, ameloblastin, casein kinase 2, enamel, intrinsically disordered proteins, phosphorylation, protein kinase A, self-assembly,
 - Publication type
 - Journal Article MeSH
 
The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.
- Keywords
 - ameloblastin, amelogenin, biomineralization, enamel, intrinsically disordered protein,
 - MeSH
 - Amelogenin metabolism MeSH
 - Amino Acid Motifs physiology MeSH
 - Biological Evolution MeSH
 - Extracellular Matrix Proteins metabolism MeSH
 - Durapatite metabolism MeSH
 - Mice MeSH
 - Dental Enamel Proteins metabolism MeSH
 - Amino Acid Sequence MeSH
 - Protein Binding physiology MeSH
 - Intrinsically Disordered Proteins metabolism MeSH
 - Dental Enamel metabolism MeSH
 - Animals MeSH
 - Check Tag
 - Male MeSH
 - Mice MeSH
 - Animals MeSH
 - Publication type
 - Journal Article MeSH
 - Research Support, Non-U.S. Gov't MeSH
 - Research Support, N.I.H., Extramural MeSH
 - Names of Substances
 - Amelogenin MeSH
 - enamel matrix proteins MeSH Browser
 - Extracellular Matrix Proteins MeSH
 - Durapatite MeSH
 - Dental Enamel Proteins MeSH
 - Intrinsically Disordered Proteins MeSH
 
Using the distal molar of a minipig as a model, we studied changes in the microstructural characteristics of apatite crystallites during enamel maturation (16-23 months of postnatal age), and their effects upon the mechanical properties of the enamel coat. The slow rate of tooth development in a pig model enabled us to reveal essential heterochronies in particular components of the maturation process. The maturation changes began along the enamel-dentine junction (EDJ) of the trigonid, spreading subsequently to the outer layers of the enamel coat to appear at the surface zone with a 2-month delay. Correspondingly, at the distal part of the tooth the timing of maturation processes is delayed by 3-5 month compared to the mesial part of the tooth. The early stage of enamel maturation (16-20 months), when the enamel coat is composed almost exclusively of radial prismatic enamel, is characterized by a gradual increase in crystallite thickness (by a mean monthly increment of 3.8 nm); and an increase in the prism width and thickness of crystals composed of elementary crystallites. The late stage of maturation (the last two months prior to tooth eruption), marked with the rapid appearance of the interprismatic matrix (IPM) during which the crystals densely infill spaces between prisms, is characterized by an abrupt decrease in microstrain and abrupt changes in the micromechanical properties of the enamel: a rapid increase in its ability to resist long-term load and its considerable hardening. The results suggest that in terms of crystallization dynamics the processes characterizing the early and late stage of mammalian enamel maturation represent distinct entities. In regards to common features with enamel formation in the tribosphenic molar we argue that the separation of these processes could be a common apomorphy of mammalian amelogenetic dynamics in general.
- MeSH
 - Dentin diagnostic imaging metabolism MeSH
 - Crystallography MeSH
 - Swine, Miniature MeSH
 - Molar diagnostic imaging growth & development MeSH
 - Swine MeSH
 - Tooth Eruption physiology MeSH
 - Dental Enamel diagnostic imaging metabolism MeSH
 - Animals MeSH
 - Check Tag
 - Animals MeSH
 - Publication type
 - Journal Article MeSH
 
During amelogenesis the extracellular enamel matrix protein AMBN is quickly processed into 17 kDa (N-terminus) and 23 kDa (C-terminus) fragments. In particular, alternatively spliced regions derived by exon 5/6 within the N-terminus region are known to be critical in biomineralization. Human mesenchymal stem cells (hMSC) also express and secrete AMBN, but it is unclear if this expression has effects on the hMSC themselves. If, as suggested from previous findings, AMBN act as a signaling molecule, such effects could influence hMSC growth and differentiation, as well as promoting the secretion of other signaling proteins like cytokines and chemokines. If AMBN is found to modulate stem cell behavior and fate, it will impact our understanding on how extracellular matrix molecules can have multiple roles during development ontogenesis, mineralization and healing of mesenchymal tissues. Here we show that synthetic peptides representing exon 5 promote hMSC proliferation. Interestingly, this effect is inhibited by the application of a 15 aa peptide representing the alternatively spliced start of exon 6. Both peptides also influence gene expression of RUNX2 and osteocalcin, and promote calcium deposition in cultures, indicating a positive influence on the osteogenic capacity of hMSC. We also show that the full-length AMBN-WT and N-terminus region enhance the secretion of RANTES, IP-10, and IL-8. In contrast, the AMBN C-terminus fragment and the exon 5 deleted AMBN (DelEx5) have no detectable effects on any of the parameters investigated. These findings suggest the signaling effect of AMBN is conveyed by processed products, whereas the effect on proliferation is differentially modulated through alternative splicing during gene expression.
- Keywords
 - ameloblastin, biomineralization, bone growth, exon 5, human mesenchymal stem cells, osteogenesis, proliferation,
 - Publication type
 - Journal Article MeSH