Nejvíce citovaný článek - PubMed ID 24397874
Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase
Telomere repeat binding proteins (TRBs) belong to a family of proteins possessing a Myb-like domain which binds to telomeric repeats. Three members of this family (TRB1, TRB2, TRB3) from Arabidopsis thaliana have already been described as associated with terminal telomeric repeats (telomeres) or short interstitial telomeric repeats in gene promoters (telo-boxes). They are also known to interact with several protein complexes: telomerase, Polycomb repressive complex 2 (PRC2) E(z) subunits and the PEAT complex (PWOs-EPCRs-ARIDs-TRBs). Here we characterize two novel members of the TRB family (TRB4 and TRB5). Our wide phylogenetic analyses have shown that TRB proteins evolved in the plant kingdom after the transition to a terrestrial habitat in Streptophyta, and consequently TRBs diversified in seed plants. TRB4-5 share common TRB motifs while differing in several others and seem to have an earlier phylogenetic origin than TRB1-3. Their common Myb-like domains bind long arrays of telomeric repeats in vitro, and we have determined the minimal recognition motif of all TRBs as one telo-box. Our data indicate that despite the distinct localization patterns of TRB1-3 and TRB4-5 in situ, all members of TRB family mutually interact and also bind to telomerase/PRC2/PEAT complexes. Additionally, we have detected novel interactions between TRB4-5 and EMF2 and VRN2, which are Su(z)12 subunits of PRC2.
- Klíčová slova
- PEAT, PRC2, TERT, TRB, Telomere repeat binding, Telomeric,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- fylogeneze MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- proteiny vázající telomery genetika metabolismus MeSH
- půda MeSH
- telomerasa * genetika metabolismus MeSH
- telomery genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny huseníčku * MeSH
- proteiny vázající telomery MeSH
- půda MeSH
- telomerasa * MeSH
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel's anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel's early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
- Klíčová slova
- FISH, NGS, TRAP, eukaryotic tree of life, interstitial telomere sequences, retroelements, satellite, subtelomere structure, telomerase RNA, telomere evolution,
- MeSH
- DNA MeSH
- lidé MeSH
- repetitivní sekvence nukleových kyselin MeSH
- satelitní DNA * MeSH
- sekvence nukleotidů MeSH
- telomery * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- satelitní DNA * MeSH
Polycomb repressive complex 2 (PRC2) represents a group of evolutionarily conserved multi-subunit complexes that repress gene transcription by introducing trimethylation of lysine 27 on histone 3 (H3K27me3). PRC2 activity is of key importance for cell identity specification and developmental phase transitions in animals and plants. The composition, biochemistry, and developmental function of PRC2 in animal and flowering plant model species are relatively well described. Recent evidence demonstrates the presence of PRC2 complexes in various eukaryotic supergroups, suggesting conservation of the complex and its function. Here, we provide an overview of the current understanding of PRC2-mediated repression in different representatives of eukaryotic supergroups with a focus on the green lineage. By comparison of PRC2 in different eukaryotes, we highlight the possible common and diverged features suggesting evolutionary implications and outline emerging questions and directions for future research of polycomb repression and its evolution.
Telomerase, an essential enzyme that maintains chromosome ends, is important for genome integrity and organism development. Various hypotheses have been proposed in human, ciliate and yeast systems to explain the coordination of telomerase holoenzyme assembly and the timing of telomerase performance at telomeres during DNA replication or repair. However, a general model is still unclear, especially pathways connecting telomerase with proposed non-telomeric functions. To strengthen our understanding of telomerase function during its intracellular life, we report on interactions of several groups of proteins with the Arabidopsis telomerase protein subunit (AtTERT) and/or a component of telomerase holoenzyme, POT1a protein. Among these are the nucleosome assembly proteins (NAP) and the minichromosome maintenance (MCM) system, which reveal new insights into the telomerase interaction network with links to telomere chromatin assembly and replication. A targeted investigation of 176 candidate proteins demonstrated numerous interactions with nucleolar, transport and ribosomal proteins, as well as molecular chaperones, shedding light on interactions during telomerase biogenesis. We further identified protein domains responsible for binding and analyzed the subcellular localization of these interactions. Moreover, additional interaction networks of NAP proteins and the DOMINO1 protein were identified. Our data support an image of functional telomerase contacts with multiprotein complexes including chromatin remodeling and cell differentiation pathways.
- Klíčová slova
- Arabidopsis, chromatin, folding, mitochondria, protein–protein interaction, replication, telomerase, transport,
- MeSH
- Arabidopsis metabolismus MeSH
- genetická transkripce MeSH
- Golgiho aparát metabolismus MeSH
- homeostáza telomer MeSH
- mapy interakcí proteinů MeSH
- mitochondrie metabolismus MeSH
- multiproteinové komplexy metabolismus MeSH
- nukleozomy metabolismus MeSH
- peptidy metabolismus MeSH
- posttranskripční úpravy RNA genetika MeSH
- proteiny huseníčku chemie metabolismus MeSH
- proteiny vázající telomery metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- replikace DNA MeSH
- restrukturace chromatinu MeSH
- ribozomy metabolismus MeSH
- telomerasa metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- multiproteinové komplexy MeSH
- nukleozomy MeSH
- peptidy MeSH
- proteiny huseníčku MeSH
- proteiny vázající telomery MeSH
- telomerasa MeSH
Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.
- Klíčová slova
- genome stability, subtelomere, t-loop, telomerase, telomeres,
- MeSH
- Arabidopsis MeSH
- homeostáza telomer * MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- telomerasa genetika metabolismus MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny huseníčku MeSH
- telomerasa MeSH
- TERT protein, Arabidopsis MeSH Prohlížeč
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase-a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase-its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component-were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
- Klíčová slova
- evolution, plant TERT, plant TR., telomerase, telomerase RNA (TR), telomerase reverse transcriptase (TERT),
- MeSH
- biologická evoluce * MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- Eukaryota klasifikace genetika metabolismus MeSH
- fylogeneze MeSH
- lidé MeSH
- RNA fyziologie MeSH
- telomerasa chemie fyziologie MeSH
- telomery metabolismus MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- RNA MeSH
- telomerasa MeSH
- telomerase RNA MeSH Prohlížeč
Understanding how the packaging of chromatin in the nucleus is regulated and organized to guide complex cellular and developmental programmes, as well as responses to environmental cues is a major question in biology. Technological advances have allowed remarkable progress within this field over the last years. However, we still know very little about how the 3D genome organization within the cell nucleus contributes to the regulation of gene expression. The nuclear space is compartmentalized in several domains such as the nucleolus, chromocentres, telomeres, protein bodies, and the nuclear periphery without the presence of a membrane around these domains. The role of these domains and their possible impact on nuclear activities is currently under intense investigation. In this review, we discuss new data from research in plants that clarify functional links between the organization of different nuclear domains and plant genome function with an emphasis on the potential of this organization for gene regulation.
- Klíčová slova
- 3D Chromatin organization, chromocentres, gene expression, liquid–liquid phase separation (LLPS), nuclear bodies, nuclear domains, nuclear periphery, nucleolus, telomeres, topologically associated domains (TADs),
- MeSH
- buněčné jadérko MeSH
- buněčné jádro * MeSH
- chromatin * MeSH
- regulace genové exprese MeSH
- rostliny genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chromatin * MeSH
Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the "telomere clock" in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.
- Klíčová slova
- Arabidopsis, aging, chromatin, epigenetics, human, review, telomerase, telomere,
- MeSH
- chromatin metabolismus MeSH
- epigeneze genetická MeSH
- lidé MeSH
- rostliny metabolismus MeSH
- stárnutí buněk genetika MeSH
- telomerasa metabolismus MeSH
- telomery metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chromatin MeSH
- telomerasa MeSH
Standard pathways involved in the regulation of telomere stability do not contribute to gradual telomere elongation observed in the course of A. thaliana calli propagation. Genetic and epigenetic changes accompanying the culturing of plant cells have frequently been reported. Here we aimed to characterize the telomere homeostasis during long term callus propagation. While in Arabidopsis thaliana calli gradual telomere elongation was observed, telomeres were stable in Nicotiana tabacum and N. sylvestris cultures. Telomere elongation during callus propagation is thus not a general feature of plant cells. The long telomere phenotype in Arabidopsis calli was correlated neither with changes in telomerase activity nor with activation of alternative mechanisms of telomere elongation. The dynamics of telomere length changes was maintained in mutant calli with loss of function of important epigenetic modifiers but compromised in the presence of epigenetically active drug zebularine. To examine whether the cell culture-induced disruption of telomere homeostasis is associated with the modulated structure of chromosome ends, epigenetic properties of telomere chromatin were analysed. Albeit distinct changes in epigenetic modifications of telomere histones were observed, these were broadly stochastic. Our results show that contrary to animal cells, the structure and function of plant telomeres is not determined significantly by the epigenetic character of telomere chromatin. Set of differentially transcribed genes was identified in calli, but considering the known telomere- or telomerase-related functions of respective proteins, none of these changes per se was apparently related to the elongated telomere phenotype. Based on our data, we propose that the disruption in telomere homeostasis in Arabidopsis calli arises from the interplay of multiple factors, as a part of reprogramming of plant cells to long-term culture conditions.
- Klíčová slova
- Arabidopsis thaliana, Callus, Chromosome stability, Epigenetics, Regenerated plants, Telomere,
- MeSH
- Arabidopsis účinky léků genetika metabolismus MeSH
- chromatin genetika MeSH
- cytidin analogy a deriváty farmakologie MeSH
- druhová specificita MeSH
- ekotyp MeSH
- epigeneze genetická účinky léků MeSH
- histony metabolismus MeSH
- homeostáza telomer * účinky léků MeSH
- messenger RNA genetika metabolismus MeSH
- mutace genetika MeSH
- proteiny huseníčku metabolismus MeSH
- regenerace účinky léků MeSH
- rostlinné geny MeSH
- tabák genetika MeSH
- techniky tkáňových kultur * MeSH
- telomerasa metabolismus MeSH
- telomery metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
- cytidin MeSH
- histony MeSH
- messenger RNA MeSH
- proteiny huseníčku MeSH
- pyrimidin-2-one beta-ribofuranoside MeSH Prohlížeč
- telomerasa MeSH
Arabidopsis and human ARM protein interact with telomerase. Deregulated mRNA levels of DNA repair and ribosomal protein genes in an Arabidopsis arm mutant suggest non-telomeric ARM function. The human homolog ARMC6 interacts with hTRF2. Telomerase maintains telomeres and has proposed non-telomeric functions. We previously identified interaction of the C-terminal domain of Arabidopsis telomerase reverse transcriptase (AtTERT) with an armadillo/β-catenin-like repeat (ARM) containing protein. Here we explore protein-protein interactions of the ARM protein, AtTERT domains, POT1a, TRF-like family and SMH family proteins, and the chromatin remodeling protein CHR19 using bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H) analysis, and co-immunoprecipitation. The ARM protein interacts with both the N- and C-terminal domains of AtTERT in different cellular compartments. ARM interacts with CHR19 and TRF-like I family proteins that also bind AtTERT directly or through interaction with POT1a. The putative human ARM homolog co-precipitates telomerase activity and interacts with hTRF2 protein in vitro. Analysis of Arabidopsis arm mutants shows no obvious changes in telomere length or telomerase activity, suggesting that ARM is not essential for telomere maintenance. The observed interactions with telomerase and Myb-like domain proteins (TRF-like family I) may therefore reflect possible non-telomeric functions. Transcript levels of several DNA repair and ribosomal genes are affected in arm mutants, and ARM, likely in association with other proteins, suppressed expression of XRCC3 and RPSAA promoter constructs in luciferase reporter assays. In conclusion, ARM can participate in non-telomeric functions of telomerase, and can also perform its own telomerase-independent functions.
- Klíčová slova
- ARMC6, Armadillo/β-catenin-like repeat, AtTERT, Homologous recombination, Protein–protein interaction, Telomerase activity,
- MeSH
- Arabidopsis enzymologie genetika MeSH
- holoenzymy MeSH
- lidé MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny s doménou armadillo genetika metabolismus MeSH
- reportérové geny MeSH
- techniky dvojhybridového systému MeSH
- telomerasa genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ARMC6 protein, human MeSH Prohlížeč
- holoenzymy MeSH
- proteiny huseníčku MeSH
- proteiny s doménou armadillo MeSH
- telomerasa MeSH