Most cited article - PubMed ID 2580763
Differential staining of cryptosporidia by aniline-carbol-methyl violet and tartrazine in smears from feces and scrapings of intestinal mucosa
The Eurasian beaver (Castor fiber) is an expanding species in Europe in recent decades due to reintroductions and natural population growth. Beavers expanded rapidly in the second half of the 20th century, and their expansion was particularly rapid in the Danube basin. Nowadays, the majority of the continuous population located in the central and eastern parts of the continent and a large disjunct population in Norway and Sweden. Despite the increasing population size, the role of the beaver as a source of waterborne pathogens is not firmly established or is often inferred from circumstantial data. In order to extend knowledge about the composition of the parasite fauna of beavers occurring in Slovakia, 21 faecal samples taken near their burrows from three sites (located in the Topľa, Poprad and Danube river basin) were examined microscopically and by polymerase chain reaction (PCR). PCR-positive specimens were further examined by DNA sequencing. Parasites were detected in 21% of the examined beavers, specifically the protozoa Cryptosporidium spp. (n = 2), Blastocystis sp. (n = 1), and microsporidia Enterocytozoon bieneusi (n = 1) and Encephalitozoon spp. (n = 1). Using the sequence analysis, two variants of Cryptosporidium proliferans, a new subtype of Blastocystis sp., genotype D of E. bieneusi and Encephalitozoon intestinalis were identified. A putatively novel Blastocystis subtype (ST), originated from a site near the Danube river (southwestern Slovakia), was proposed based on high genetic divergence from the closest described subtype ST12 (11.9%) and unique phylogenetic position in a clade composed of ST's 35-38. The increased risk of zoonotic transmission or transmission to other animals was particularly evident in the site near the Topľa river (northeastern Slovakia), where fungal spores of zoonotic genotype D of E. bieneusi and E. intestinalis, together with oocysts of the potentially zoonotic C. proliferans, were found.
- Keywords
- Gastrointestinal parasites, Molecular analysis, Protected animals, Protozoan, Rodents, Zoonoses,
- Publication type
- Journal Article MeSH
BACKGROUND: Cryptosporidium spp. are globally distributed parasites that infect epithelial cells in the microvillus border of the gastrointestinal tract of all classes of vertebrates. Cryptosporidium chipmunk genotype I is a common parasite in North American tree squirrels. It was introduced into Europe with eastern gray squirrels and poses an infection risk to native European squirrel species, for which infection is fatal. In this study, the biology and genetic variability of different isolates of chipmunk genotype I were investigated. METHODS: The genetic diversity of Cryptosporidium chipmunk genotype I was analyzed by PCR/sequencing of the SSU rRNA, actin, HSP70, COWP, TRAP-C1 and gp60 genes. The biology of chipmunk genotype I, including oocyst size, localization of the life cycle stages and pathology, was examined by light and electron microscopy and histology. Infectivity to Eurasian red squirrels and eastern gray squirrels was verified experimentally. RESULTS: Phylogenic analyses at studied genes revealed that chipmunk genotype I is genetically distinct from other Cryptosporidium spp. No detectable infection occurred in chickens and guinea pigs experimentally inoculated with chipmunk genotype I, while in laboratory mice, ferrets, gerbils, Eurasian red squirrels and eastern gray squirrels, oocyst shedding began between 4 and 11 days post infection. While infection in mice, gerbils, ferrets and eastern gray squirrels was asymptomatic or had mild clinical signs, Eurasian red squirrels developed severe cryptosporidiosis that resulted in host death. The rapid onset of clinical signs characterized by severe diarrhea, apathy, loss of appetite and subsequent death of the individual may explain the sporadic occurrence of this Cryptosporidium in field studies and its concurrent spread in the population of native European squirrels. Oocysts obtained from a naturally infected human, the original inoculum, were 5.64 × 5.37 μm and did not differ in size from oocysts obtained from experimentally infected hosts. Cryptosporidium chipmunk genotype I infection was localized exclusively in the cecum and anterior part of the colon. CONCLUSIONS: Based on these differences in genetics, host specificity and pathogenicity, we propose the name Cryptosporidium mortiferum n. sp. for this parasite previously known as Cryptosporidium chipmunk genotype I.
- Keywords
- Biology, Course of infection, Cryptosporidiosis, Genetic diversity, Mortality, Oocyst size, Phylogeny,
- MeSH
- Cryptosporidiidae * MeSH
- Cryptosporidium * MeSH
- Feces parasitology MeSH
- Ferrets MeSH
- Phylogeny MeSH
- Genotype MeSH
- Gerbillinae MeSH
- Cryptosporidiosis * parasitology MeSH
- Chickens MeSH
- Humans MeSH
- Guinea Pigs MeSH
- Mice MeSH
- Oocysts MeSH
- Sciuridae parasitology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Guinea Pigs MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Cryptosporidium spp. are common protozoan pathogens in mammals. The diversity and biology of Cryptosporidium in tree squirrels are not well studied. A total of 258 Eurasian red squirrels (Sciurus vulgaris) from 25 and 15 locations in the Czech Republic and Slovakia, respectively, were examined for Cryptosporidium spp. oocysts and specific DNA at the SSU, actin, HSP70, TRAP-C1, COWP, and gp60 loci. Out of 26 positive animals, only juveniles (9/12) were microscopically positive (18,000 to 72,000 OPG), and molecular analyses revealed the presence of Cryptosporidium sp. ferret genotype in all specimens. Oocysts obtained from naturally-infected squirrels measured 5.54-5.22 μm and were not infectious for laboratory mice (BALB/c and SCID), Mongolian gerbils, Guinea pigs, Southern multimammate mice, chickens, or budgerigars. None of naturally infected squirrels showed clinical signs of disease. The frequency of occurrence of the ferret genotype in squirrels did not vary statistically based on host age, gender or country of capture. Phylogenetic analysis of sequences from six loci revealed that Cryptosporidium sp. ferret genotype is genetically distinct from the currently accepted Cryptosporidium species. Morphological and biological data from this and previous studies support the establishment of Cryptosporidium sp. ferret genotype as a new species, Cryptosporidium sciurinum n. sp.
- Keywords
- Cryptosporidium sp. ferret genotype, biology, course of infection, infectivity, occurrence, oocyst size, phylogeny,
- Publication type
- Journal Article MeSH
Cryptosporidium spp., common parasites of vertebrates, remain poorly studied in wildlife. This study describes the novel Cryptosporidium species adapted to nutrias (Myocastor coypus). A total of 150 faecal samples of feral nutria were collected from locations in the Czech Republic and Slovakia and examined for Cryptosporidium spp. oocysts and specific DNA at the SSU, actin, HSP70, and gp60 loci. Molecular analyses revealed the presence of C. parvum (n = 1), C. ubiquitum subtype family XIId (n = 5) and Cryptosporidium myocastoris n. sp. XXIIa (n = 2), and XXIIb (n = 3). Only nutrias positive for C. myocastoris shed microscopically detectable oocysts, which measured 4.8-5.2 × 4.7-5.0 µm, and oocysts were infectious for experimentally infected nutrias with a prepatent period of 5-6 days, although not for mice, gerbils, or chickens. The infection was localised in jejunum and ileum without observable macroscopic changes. The microvilli adjacent to attached stages responded by elongating. Clinical signs were not observed in naturally or experimentally infected nutrias. Phylogenetic analyses at SSU, actin, and HSP70 loci demonstrated that C. myocastoris n. sp. is distinct from other valid Cryptosporidium species.
- Keywords
- adaptation, biology, course of infection, infectivity, oocyst size, parasite, phylogeny, prevalence,
- Publication type
- Journal Article MeSH
The diversity and biology of Cryptosporidium that is specific for rats (Rattus spp.) are not well studied. We examined the occurrence and genetic diversity of Cryptosporidium spp. in wild brown rats (Rattus norvegicus) by microscopy and polymerase chain reaction (PCR)/sequencing targeting the small subunit rDNA (SSU), actin and HSP70 genes. Out of 343 faecal samples tested, none were positive by microscopy and 55 were positive by PCR. Sequence analysis of SSU gene revealed the presence of Cryptosporidium muris (n = 4), C. andersoni (n = 3), C. ryanae (n = 1), C. occultus (n = 3), Cryptosporidium rat genotype I (n = 23), Cryptosporidium rat genotype IV (n = 16) and novel Cryptosporidium rat genotype V (n = 5). Spherical oocysts of Cryptosporidium rat genotype I obtained from naturally-infected rats, measuring 4.4-5.4 μm × 4.3-5.1 μm, were infectious to the laboratory rats, but not to the BALB/c mice (Mus musculus) nor Mongolian gerbils (Meriones unguiculatus). The prepatent period was 3 days post infection and the patent period was longer than 30 days. Naturally- and experimentally-infected rats showed no clinical signs of disease. Percentage of nucleotide similarities at the SSU, actin, HSP70 loci between C. ratti n. sp. and the rat derived C. occultus and Cryptosporidium rat genotype II, III, IV, and V ranged from 91.0 to 98.1%. These genetic variations were similar or greater than that observed between closely related species, i.e. C. parvum and C. erinacei (93.2-99.5%). Our morphological, genetic and biological data support the establishment of Cryptosporidium rat genotype I as a new species, Cryptosporidium ratti n. sp.
- Keywords
- Cryptosporidium ratti, infectivity, morphometric analysis, phylogeny, prevalence,
- MeSH
- Actins genetics MeSH
- Cryptosporidium * classification genetics isolation & purification MeSH
- Animals, Wild parasitology MeSH
- Feces parasitology MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Classification MeSH
- Rats parasitology MeSH
- Mice MeSH
- Prevalence MeSH
- HSP70 Heat-Shock Proteins genetics MeSH
- DNA, Protozoan MeSH
- DNA, Ribosomal genetics MeSH
- Animals MeSH
- Check Tag
- Rats parasitology MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Actins MeSH
- HSP70 Heat-Shock Proteins MeSH
- DNA, Protozoan MeSH
- DNA, Ribosomal MeSH
BACKGROUND: Avian cryptosporidiosis is a common parasitic disease that is caused by five species, which are well characterised at the molecular and biological level, and more than 18 genotypes for which we have limited information. In this study, we determined the occurrence and molecular characteristics of Cryptosporidium spp. in farmed ostriches in the Czech Republic. METHODS: The occurrence and genetic identity of Cryptosporidium spp. were analysed by microscopy and PCR/sequencing of the small subunit rRNA, actin, HSP70 and gp60 genes. Cryptosporidium avian genotype II was examined from naturally and experimentally infected hosts and measured using differential interference contrast. The localisation of the life-cycle stages was studied by electron microscopy and histologically. Infectivity of Cryptosporidium avian genotype II for cockatiels (Nymphicus hollandicus (Kerr)), chickens (Gallus gallus f. domestica (L.)), geese (Anser anser f. domestica (L.)), SCID and BALB/c mice (Mus musculus L.) was verified. RESULTS: A total of 204 individual faecal samples were examined for Cryptosporidium spp. using differential staining and PCR/sequencing. Phylogenetic analysis of small subunit rRNA, actin, HSP70 and gp60 gene sequences showed the presence of Cryptosporidium avian genotype II (n = 7) and C. ubiquitum Fayer, Santín & Macarisin, 2010 IXa (n = 5). Only ostriches infected with Cryptosporidium avian genotype II shed oocysts that were detectable by microscopy. Oocysts were purified from a pooled sample of four birds, characterised morphometrically and used in experimental infections to determine biological characteristics. Oocysts of Cryptosporidium avian genotype II measure on average 6.13 × 5.15 μm, and are indistinguishable by size from C. baileyi Current, Upton & Haynes, 1986 and C. avium Holubová, Sak, Horčičková, Hlásková, Květoňová, Menchaca, McEvoy & Kváč, 2016. Cryptosporidium avian genotype II was experimentally infectious for geese, chickens and cockatiels, with a prepatent period of four, seven and eight days post-infection, respectively. The infection intensity ranged from 1000 to 16,000 oocysts per gram. None of the naturally or experimentally infected birds developed clinical signs in the present study. CONCLUSIONS: The molecular and biological characteristics of Cryptosporidium avian genotype II, described here, support the establishment of a new species, Cryptosporidium ornithophilus n. sp.
- Keywords
- C. ubiquitum, Cryptosporidium avian genotype II, Cryptosporidium ornithophilus n. sp., Experimental infections, Occurrence, Oocyst size, PCR,
- MeSH
- Cryptosporidium classification genetics ultrastructure MeSH
- Phylogeny MeSH
- Animals, Domestic parasitology MeSH
- Host Specificity MeSH
- Classification MeSH
- Cryptosporidiosis parasitology MeSH
- Bird Diseases parasitology MeSH
- Genes, Protozoan genetics MeSH
- Birds parasitology MeSH
- Life Cycle Stages MeSH
- Struthioniformes parasitology MeSH
- DNA Barcoding, Taxonomic veterinary MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The genetic diversity of Cryptosporidium spp. in Apodemus spp. (striped field mouse, yellow-necked mouse and wood mouse) from 16 European countries was examined by PCR/sequencing of isolates from 437 animals. Overall, 13.7% (60/437) of animals were positive for Cryptosporidium by PCR. Phylogenetic analysis of small-subunit rRNA, Cryptosporidium oocyst wall protein and actin gene sequences showed the presence of Cryptosporidium ditrichi (22/60), Cryptosporidium apodemi (13/60), Cryptosporidium apodemus genotype I (8/60), Cryptosporidium apodemus genotype II (9/60), Cryptosporidium parvum (2/60), Cryptosporidium microti (2/60), Cryptosporidium muris (2/60) and Cryptosporidium tyzzeri (2/60). At the gp60 locus, novel gp60 families XVIIa and XVIIIa were identified in Cryptosporidium apodemus genotype I and II, respectively, subtype IIaA16G1R1b was identified in C. parvum, and subtypes IXaA8 and IXcA6 in C. tyzzeri. Only animals infected with C. ditrichi, C. apodemi, and Cryptosporidium apodemus genotypes shed oocysts that were detectable by microscopy, with the infection intensity ranging from 2000 to 52,000 oocysts per gram of faeces. None of the faecal samples was diarrheic in the time of the sampling.
- Keywords
- Epidemiology, Molecular analyses, Phylogeny, Rodentia,
- MeSH
- Cryptosporidium genetics MeSH
- Genetic Variation * MeSH
- Genotype MeSH
- Cryptosporidiosis parasitology MeSH
- Murinae microbiology MeSH
- Mice MeSH
- RNA, Ribosomal, 18S genetics MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- RNA, Ribosomal, 18S MeSH
BACKGROUND: Cryptosporidium is an important gut microbe whose contributions towards infant and immunocompromise patient mortality rates are steadily increasing. Over the last decade, we have seen the development of various tools and methods for studying Cryptosporidium infection and its interactions with their hosts. One area that is sorely overlooked is the effect infection has on host metabolic processes. RESULTS: Using a 1H nuclear magnetic resonance approach to metabolomics, we have explored the nature of the mouse gut metabolome as well as providing the first insight into the metabolome of an infected cell line. Statistical analysis and predictive modelling demonstrated new understandings of the effects of a Cryptosporidium infection, while verifying the presence of known metabolic changes. Of note is the potential contribution of host derived taurine to the diarrhoeal aspects of the disease previously attributed to a solely parasite-based alteration of the gut environment, in addition to other metabolites involved with host cell catabolism. CONCLUSION: This approach will spearhead our understanding of the Cryptosporidium-host metabolic exchange and provide novel targets for tackling this deadly parasite.
- Keywords
- COLO-680N, Cryptosporidiosis, Metabolomics, NMR, Taurine,
- Publication type
- Journal Article MeSH
Fecal samples from wild-caught common voles (n = 328) from 16 locations in the Czech Republic were screened for Cryptosporidium by microscopy and PCR/sequencing at loci coding small-subunit rRNA, Cryptosporidium oocyst wall protein, actin and 70 kDa heat shock protein. Cryptosporidium infections were detected in 74 voles (22.6%). Rates of infection did not differ between males and females nor between juveniles and adults. Phylogenetic analysis revealed the presence of eight Cryptosporidium species/genotypes including two new species, C. alticolis and C. microti. These species from wild-caught common voles were able to infect common and meadow voles under experimental conditions, with a prepatent period of 3-5 days post-infection (DPI), but they were not infectious for various other rodents or chickens. Meadow voles lost infection earlier than common voles (11-14 vs 13-16 DPI) and had significantly lower infection intensity. Cryptosporidium alticolis infects the anterior small intestine and has larger oocysts (5.4 × 4.9 µm), whereas C. microti infects the large intestine and has smaller oocysts (4.3 × 4.1 µm). None of the rodents developed clinical signs of infection. Genetic and biological data support the establishment of C. alticolis and C. microti as separate species of the genus Cryptosporidium.
- Keywords
- Experimental infection, Rodentia, molecular analyses, oocyst size, phylogeny, voles,
- MeSH
- Arvicolinae parasitology MeSH
- Cryptosporidium classification genetics ultrastructure MeSH
- Feces parasitology MeSH
- Microscopy, Fluorescence MeSH
- Phylogeny MeSH
- Gastrointestinal Tract parasitology pathology ultrastructure MeSH
- Genetic Variation MeSH
- Microscopy, Interference MeSH
- Cryptosporidiosis epidemiology parasitology transmission MeSH
- Rats MeSH
- Chickens MeSH
- Microscopy, Electron, Scanning MeSH
- Murinae MeSH
- Mice, Inbred BALB C MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Rodent Diseases epidemiology parasitology transmission MeSH
- Polymerase Chain Reaction MeSH
- Prevalence MeSH
- DNA, Protozoan chemistry genetics isolation & purification MeSH
- RNA, Ribosomal genetics MeSH
- Base Sequence MeSH
- Sequence Alignment veterinary MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- DNA, Protozoan MeSH
- RNA, Ribosomal MeSH
IntroductionThis paper reviews the current knowledge and understanding of Cryptosporidium spp. and Giardia spp. in humans, animals and the environment in 10 countries in the eastern part of Europe: Bosnia and Herzegovina, Croatia, Czech Republic, Estonia, Hungary, Latvia, Poland, Romania, Serbia and Slovenia. Methods: Published scientific papers and conference proceedings from the international and local literature, official national health service reports, national databases and doctoral theses in local languages were reviewed to provide an extensive overview on the epidemiology, diagnostics and research on these pathogens, as well as analyse knowledge gaps and areas for further research. Results:Cryptosporidium spp. and Giardia spp. were found to be common in eastern Europe, but the results from different countries are difficult to compare because of variations in reporting practices and detection methodologies used. Conclusion: Upgrading and making the diagnosis/detection procedures more uniform is recommended throughout the region. Public health authorities should actively work towards increasing reporting and standardising reporting practices as these prerequisites for the reported data to be valid and therefore necessary for appropriate control plans.
- Keywords
- One Health, cryptosporidiosis, giardiasis, zoonosis,
- MeSH
- Cryptosporidium genetics isolation & purification MeSH
- Feces parasitology MeSH
- Giardia genetics isolation & purification MeSH
- Giardiasis epidemiology parasitology MeSH
- Cryptosporidiosis epidemiology parasitology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Humans MeSH
- Foodborne Diseases epidemiology parasitology MeSH
- Prevalence MeSH
- Public Health * MeSH
- Environment MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- Europe, Eastern epidemiology MeSH