Most cited article - PubMed ID 27379083
Composition of Gut Microbiota Influences Resistance of Newly Hatched Chickens to Salmonella Enteritidis Infection
There are extensive differences in the caecal microbiota of chicks from hatcheries and those inoculated with faecal material from adult hens. Besides differences in microbial composition, the latter chickens are highly resistant to Salmonella Enteritidis challenges, while the former are susceptible. In this study, we tested whether strains from genera Bacteroides, Megamonas, or Megasphaera can increase chicken resistance to Salmonella and Campylobacter jejuni when defined microbial mixtures consisting of these bacterial genera are administered. Mixtures consisting of different species and strains from the above-mentioned genera efficiently colonised the chicken caecum and increased chicken resistance to Salmonella by a factor of 50. The tested mixtures were even more effective in protecting chickens from Salmonella in a seeder model of infection (3-5 log reduction). The tested mixtures partially protected chickens from C. jejuni infection, though the effect was lower than that against Salmonella. The obtained data represent a first step for the development of a new type of probiotics for poultry.
- Keywords
- Bacteroides, Megamonas, Megasphaera, caecum, chicken, microbiota, probiotics,
- Publication type
- Journal Article MeSH
Chickens in commercial production are hatched in hatcheries without any contact with their parents and colonization of their skin and respiratory tract is therefore dependent on environmental sources only. However, since chickens evolved to be hatched in nests, in this study we evaluated the importance of contact between hens and chicks for the development of chicken skin and tracheal microbiota. Sequencing of PCR amplified V3/V4 variable regions of the 16S rRNA gene showed that contact with adult hens decreased the abundance of E. coli, Proteus mirabilis and Clostridium perfringens both in skin and the trachea, and Acinetobacter johnsonii and Cutibacterium acnes in skin microbiota only. These species were replaced by Lactobacillus gallinarum, Lactobacillus aviarius, Limosilactobacillus reuteri, and Streptococcus pasterianus in the skin and tracheal microbiota of contact chicks. Lactobacilli can be therefore investigated for their probiotic effect in respiratory tract in the future. Skin and respiratory microbiota of contact chickens was also enriched for Phascolarctobacterium, Succinatimonas, Flavonifractor, Blautia, and [Ruminococcus] torque though, since these are strict anaerobes from the intestinal tract, it is likely that only DNA from nonviable cells was detected for these taxa.
- Keywords
- caecum, chicken, respiratory tract microbiota, skin, trachea,
- MeSH
- Respiratory System MeSH
- Escherichia coli genetics MeSH
- Chickens * MeSH
- Microbiota * MeSH
- RNA, Ribosomal, 16S analysis MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH
The concept of competitive exclusion is well established in poultry and different products are used to suppress the multiplication of enteric pathogens in the chicken intestinal tract. While the effect has been repeatedly confirmed, the specific principles of competitive exclusion are less clear. The aim of the study was to compare metabolites in the cecal digesta of differently colonized chickens. Metabolites in the cecal contents of chickens treated with a commercial competitive exclusion product or with an experimental product consisting of 23 gut anaerobes or in control untreated chickens were determined by mass spectrometry. Extensive differences in metabolite composition among the digesta of all 3 groups of chickens were recorded. Out of 1,706 detected compounds, 495 and 279 were differently abundant in the chicks treated with a commercial or experimental competitive exclusion product in comparison to the control group, respectively. Soyasaponins, betaine, carnitine, glutamate, tyramine, phenylacetaldehyde, or 3-methyladenine were more abundant in the digesta of control chicks while 4-oxododecanedioic acid, nucleotides, dipeptides, amino acids (except for glutamate), and vitamins were enriched in the digesta of chickens colonized by competitive exclusion products. Metabolites enriched in the digesta of control chicks can be classified as of plant feed origin released in the digesta by degradative activities of the chicken. Some of these molecules disappeared from the digesta of chicks colonized by complex microbiota due to them being metabolized. Instead, nucleotides, amino acids, and vitamins increased in the digesta of colonized chicks as a consequence of the additional digestive potential brought to the cecum by microbiota from competitive exclusion products. It is therefore possible to affect metabolite profiles in the chicken cecum by its colonization with selected bacterial species.
- Keywords
- cecum, chicken, competitive exclusion, metabolome, microbiota,
- MeSH
- Cecum microbiology MeSH
- Chickens * microbiology MeSH
- Glutamic Acid MeSH
- Poultry Diseases * microbiology MeSH
- Nucleotides MeSH
- Vitamin K MeSH
- Vitamins MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glutamic Acid MeSH
- Nucleotides MeSH
- Vitamin K MeSH
- Vitamins MeSH
In this study, we addressed the origin of chicken gut microbiota in commercial production by a comparison of eggshell and feed microbiota with caecal microbiota of 7-day-old chickens, using microbiota analysis by 16S rRNA sequencing. In addition, we tested at which timepoint during prenatal or neonatal development it is possible to successfully administer probiotics. We found that eggshell microbiota was a combination of environmental and adult hen gut microbiota but was completely different from caecal microbiota of 7-day-old chicks. Similarly, we observed that the composition of feed microbiota was different from caecal microbiota. Neither eggshell nor feed acted as an important source of gut microbiota for the chickens in commercial production. Following the experimental administration of potential probiotics, we found that chickens can be colonised only when already hatched and active. Spraying of eggs with gut anaerobes during egg incubation or hatching itself did not result in effective chicken colonisation. Such conclusions should be considered when selecting and administering probiotics to chickens in hatcheries. Eggshells, feed or drinking water do not act as major sources of gut microbiota. Newly hatched chickens must be colonised from additional sources, such as air dust with spores of Clostridiales. The natural colonisation starts only when chickens are already hatched, as spraying of eggs or even chickens at the very beginning of the hatching process did not result in efficient colonisation.
- Keywords
- caecum, chicken, eggshell, feed, hatchery, microbiota,
- Publication type
- Journal Article MeSH
In this review, we link ecological adaptations of different gut microbiota members with their potential for use as a new generation of probiotics. Gut microbiota members differ in their adaptations to survival in aerobic environments. Interestingly, there is an inverse relationship between aerobic survival and abundance or potential for prolonged colonization of the intestinal tract. Facultative anaerobes, aerotolerant Lactobacilli and endospore-forming Firmicutes exhibit high fluctuation, and if such bacteria are to be used as probiotics, they must be continuously administered to mimic their permanent supply from the environment. On the other hand, species not expressing any form of aerobic resistance, such as those from phylum Bacteroidetes, commonly represent host-adapted microbiota members characterized by vertical transmission from mothers to offspring, capable of long-term colonization following a single dose administration. To achieve maximal probiotic efficacy, the mode of their administration should thus reflect their natural ecology.
- Keywords
- chicken, gut, human, microbiota, pig, probiotics,
- MeSH
- Adaptation, Biological physiology MeSH
- Lactobacillus physiology MeSH
- Humans MeSH
- Probiotics pharmacology therapeutic use MeSH
- Gastrointestinal Microbiome physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Heterogeneity of infection and extreme shedding patterns are common features of animal infectious diseases. Individual hosts that are super-shedders are key targets for control strategies. Nevertheless, the mechanisms associated with the emergence of super-shedders remain largely unknown. During chicken salmonellosis, a high heterogeneity of infection is observed when animal-to-animal cross-contaminations and reinfections are reduced. We hypothesized that unlike super-shedders, low-shedders would be able to block the first Salmonella colonization thanks to a different gut microbiota. The present study demonstrates that (i) axenic and antibiotic-treated chicks are more prone to become super-shedders; (ii) super or low-shedder phenotypes can be acquired through microbiota transfer; (iii) specific gut microbiota taxonomic features determine whether the chicks develop a low- and super-shedder phenotype after Salmonella infection in isolator; (iv) partial protection can be conferred by inoculation of four commensal bacteria prior to Salmonella infection. This study demonstrates the key role plays by gut microbiota composition in the heterogeneity of infection and pave the way for developing predictive biomarkers and protective probiotics.
- MeSH
- Escherichia coli O157 * MeSH
- Phenotype MeSH
- Chickens MeSH
- Salmonella MeSH
- Gastrointestinal Microbiome * MeSH
- Bacterial Shedding MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this study, we compared the caecal microbiota composition of egg-laying hens from commercial production that are kept indoors throughout their whole life with microbiota of hens kept outdoors. The microbiota of outdoor hens consisted of lower numbers of bacterial species than the microbiota of indoor hens. At the phylum level, microbiota of outdoor hens was enriched for Bacteroidetes (62.41 ± 4.47% of total microbiota in outdoor hens and 52.01 ± 6.27% in indoor hens) and Proteobacteria (9.33 ± 4.99% in outdoor and 5.47 ± 2.24% in indoor hens). On the other hand, Firmicutes were more abundant in the microbiota of indoor hens (33.28 ± 5.11% in indoor and 20.66 ± 4.41% in outdoor hens). Horizontally transferrable antibiotic resistance genes tetO, tet(32), tet(44), and tetW were also less abundant in the microbiota of outdoor hens than indoor hens. A comparison of the microbiota composition at the genus and species levels pointed toward isolates specifically adapted to the two extreme environments. However, genera and species recorded as being similarly abundant in the microbiota of indoor and outdoor hens are equally as noteworthy because these represent microbiota members that are highly adapted to chickens, irrespective of their genetics, feed composition, and living environment.
- Keywords
- backyard chicken, caecum, chicken microbiota, environment, microbiome,
- Publication type
- Journal Article MeSH
Studies analyzing the composition of gut microbiota are quite common at present, mainly due to the rapid development of DNA sequencing technologies within the last decade. This is valid also for chickens and their gut microbiota. However, chickens represent a specific model for host-microbiota interactions since contact between parents and offspring has been completely interrupted in domesticated chickens. Nearly all studies describe microbiota of chicks from hatcheries and these chickens are considered as references and controls. In reality, such chickens represent an extreme experimental group since control chicks should be, by nature, hatched in nests in contact with the parent hen. Not properly realising this fact and utilising only 16S rRNA sequencing results means that many conclusions are of questionable biological relevance. The specifics of chicken-related gut microbiota are therefore stressed in this review together with current knowledge of the biological role of selected microbiota members. These microbiota members are then evaluated for their intended use as a form of next-generation probiotics.
- Keywords
- Bacteroidetes, Firmicutes, caecum, chicken, development, faecal, gut microbiota, ileum,
- Publication type
- Journal Article MeSH
- Review MeSH
Chicks in commercial production are highly sensitive to enteric infections and their resistance can be increased by administration of complex adult microbiota. However, it is not known which adult microbiota members are capable of colonising the caecum of newly hatched chicks. In this study, we therefore orally inoculated chicks with pure cultures of 76 different bacterial isolates originating from chicken caecum on day 1 of life and determined their ability to colonise seven days later. The caecum of newly hatched chickens could be colonised by bacteria belonging to phyla Bacteroidetes, Proteobacteria, Synergistetes, or Verrucomicrobia, and isolates from class Negativicutes (phylum Firmicutes). On the other hand, we did not record colonisation with isolates from phyla Actinobacteria and Firmicutes (except for Negativicutes), including isolates from families Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, and Lactobacillaceae. Representatives of genera commonly used in probiotics such as Lactobacillus, Enterococcus, or Bacillus therefore did not colonise the chicken intestinal tract after a single dose administration. Following challenge with Salmonella enterica serovar Enteritidis, the best protecting isolates increased the chicken's resistance to S. Enteritidis only tenfold, which, however, means that none of the tested individual bacterial isolates on their own efficiently protected chicks against S. Enteritidis.
- Keywords
- Bacteroidetes, Firmicutes, Salmonella, caecum, chicken, colonisation, oral inoculation,
- Publication type
- Journal Article MeSH
Chickens in commercial production are hatched in a clean hatchery environment in the absence of any contact with adult hens. However, Gallus gallus evolved to be hatched in a nest in contact with an adult hen which may act as a donor of gut microbiota. In this study, we therefore addressed the issue of microbiota development in newly hatched chickens with or without contact with an adult hen. We found that a mere 24-hour-long contact between a hen and newly hatched chickens was long enough for transfer of hen gut microbiota to chickens. Hens were efficient donors of Bacteroidetes and Actinobacteria. However, except for genus Faecalibacterium and bacterial species belonging to class Negativicutes, hens did not act as an important source of Gram-positive Firmicutes. Though common to the chicken intestinal tract, Lactobacilli and isolates from families Erysipelotrichaceae, Lachnospiraceae and Ruminococcaceae therefore originated from environmental sources instead of from the hens. These observation may have considerable consequences for the evidence-based design of the new generation of probiotics for poultry.
- MeSH
- Bacteria * classification genetics growth & development isolation & purification MeSH
- Cecum microbiology MeSH
- Chickens microbiology MeSH
- Gastrointestinal Microbiome * MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH