Most cited article - PubMed ID 28132822
The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure
Collagen nanofibrous materials have become integral to tissue engineering due to their exceptional properties and biocompatibility. Dehydrothermal crosslinking (DHT) enhances stability and maintains structural integrity without the formation of toxic residues. The study involved the crosslinking of electrospun collagen, applying DHT with access to air and under vacuum conditions. Various DHT exposure times of up to 72 h were applied to examine the time dependance of the DHT process. The DHT crosslinked collagen was subsequently chemically crosslinked using carbodiimides. The material crosslinked in this way evinced elevated Young's modulus values and ultimate tensile strength values, a lower swelling rate and lower shrinkage ratio during crosslinking, and a higher degree of resistance to degradation than the material crosslinked solely with DHT or carbodiimides. It was shown that the crosslinking mechanism using DHT occupies different binding sites than those using chemical crosslinking. Access to air for 12 h or less did not exert a significant impact on the material properties compared to DHT under vacuum conditions. However, concerning longer exposure times, it was determined that access to air results in the deterioration of the properties of the material and that reactions take place that occupy the free bonding sites, which subsequently reduces the effectiveness of chemical crosslinking using carbodiimides.
- Keywords
- Collagen, EDC/NHS, chemical crosslinking, crosslinking, degradation, dehydrothermal crosslinking, swelling, uniaxial tensile tests,
- Publication type
- Journal Article MeSH
Bone defects resulting from trauma, surgery, and congenital, infectious, or oncological diseases are a functional and aesthetic burden for patients. Bone regeneration is a demanding procedure, involving a spectrum of molecular processes and requiring the use of various scaffolds and substances, often yielding an unsatisfactory result. Recently, the new collagen sponge and its structural derivatives manufactured from European carp (Cyprinus carpio) were introduced and patented. Due to its fish origin, the novel scaffold poses no risk of allergic reactions or transfer of zoonoses and additionally shows superior biocompatibility, mechanical stability, adjustable degradation rate, and porosity. In this review, we focus on the basic principles of bone regeneration and describe the characteristics of an "ideal" bone scaffold focusing on guided bone regeneration. Moreover, we suggest several possible applications of this novel material in bone regeneration processes, thus opening new horizons for further research.
- Keywords
- GBR membrane, bioactive scaffold, bone regeneration, carp collagen, tissue engineering,
- Publication type
- Journal Article MeSH
- Review MeSH
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
- Keywords
- adipose tissue-derived stem cells, collagen particles, endothelial cells, extracellular matrix, gel reinforcement, remodelling, stem cells differentiation, tissue engineering, vascular patches,
- MeSH
- Cell Differentiation MeSH
- Human Umbilical Vein Endothelial Cells MeSH
- Extracellular Matrix Proteins metabolism MeSH
- Gels metabolism MeSH
- Stem Cells metabolism MeSH
- Collagen * metabolism MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Myocytes, Smooth Muscle metabolism MeSH
- Swine MeSH
- Tissue Engineering methods MeSH
- Adipose Tissue * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Extracellular Matrix Proteins MeSH
- Gels MeSH
- Collagen * MeSH
The aim of the study was to develop an orthopedic implant coating in the form of vancomycin-loaded collagen/hydroxyapatite layers (COLHA+V) that combine the ability to prevent bone infection with the ability to promote enhanced osseointegration. The ability to prevent bone infection was investigated employing a rat model that simulated the clinically relevant implant-related introduction of bacterial contamination to the bone during a surgical procedure using a clinical isolate of Staphylococcus epidermidis. The ability to enhance osseointegration was investigated employing a model of a minipig with terminated growth. Six weeks following implantation, the infected rat femurs treated with the implants without vancomycin (COLHA+S. epidermidis) exhibited the obvious destruction of cortical bone as evinced via a cortical bone porosity of up to 20% greater than that of the infected rat femurs treated with the implants containing vancomycin (COLHA+V+S. epidermidis) (3%) and the non-infected rat femurs (COLHA+V) (2%). The alteration of the bone structure of the infected COLHA+S. epidermidis group was further demonstrated by a 3% decrease in the average Ca/P molar ratio of the bone mineral. Finally, the determination of the concentration of vancomycin released into the blood stream indicated a negligible systemic load. Six months following implantation in the pigs, the quantified ratio of new bone indicated an improvement in osseointegration, with a two-fold bone ingrowth on the COLHA (47%) and COLHA+V (52%) compared to the control implants without a COLHA layer (27%). Therefore, it can be concluded that COLHA+V layers are able to significantly prevent the destruction of bone structure related to bacterial infection with a minimal systemic load and, simultaneously, enhance the rate of osseointegration.
- Keywords
- Staphylococcus epidermidis, bone, collagen, hydroxyapatite, implant-related bone infection, minipig, orthopedic implant, osseointegration, rat, vancomycin,
- Publication type
- Journal Article MeSH
The study presents a novel vancomycin-releasing collagen wound dressing derived from Cyprinus carpio collagen type I cross-linked with carbodiimide which retarded the degradation rate and increased the stability of the sponge. Following lyophilization, the dressings were subjected to gamma sterilization. The structure was evaluated via scanning electron microscopy images, micro-computed tomography, and infrared spectrometry. The structural stability and vancomycin release properties were evaluated in phosphate buffered saline. Microbiological testing and a rat model of a wound infected with methicillin-resistant Staphylococcus aureus (MRSA) were then employed to test the efficacy of the treatment of the infected wound. Following an initial mass loss due to the release of vancomycin, the sponges remained stable. After 7 days of exposure in phosphate buffered saline (37°C), 60% of the material remained with a preserved collagen secondary structure together with a high degree of open porosity (over 80%). The analysis of the release of vancomycin revealed homogeneous distribution of the antibiotic both across and between the sponges. The release of vancomycin was retarded as proved by in vitro testing and further confirmed by the animal model from which measurable concentrations were observed in blood samples 24 hours after the subcutaneous implantation of the sponge, which was more than observed following intraperitoneal administration. The sponge was also highly effective in terms of reducing the number of colony-forming units in biopsies extracted from the infected wounds 4 days following the inoculation of the wounds with the MRSA solution. The presented sponges have ideal properties to serve as wound dressing for prevention of surgical site infection or treatment of already infected wounds.
- MeSH
- Anti-Bacterial Agents pharmacokinetics MeSH
- Wound Healing drug effects MeSH
- Carps MeSH
- Carbodiimides pharmacokinetics MeSH
- Collagen pharmacokinetics MeSH
- Rats MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects MeSH
- Bandages MeSH
- Vancomycin pharmacokinetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Carbodiimides MeSH
- Collagen MeSH
- Vancomycin MeSH
OBJECTIVES: Surgical wounds resulting from biofilm-producing microorganisms represent a major healthcare problem that requires new and innovative treatment methods. Rifampin is one of a small number of antibiotics that is able to penetrate such biofilms, and its local administration has the potential to serve as an ideal surgical site infection protection and/or treatment agent. This paper presents two types (homogeneous and sandwich structured) of rifampin-releasing carbodiimide-cross-linked fresh water fish collagen wound dressings. METHODS: The dressings were prepared by means of the double-lyophilization method and sterilized via gamma irradiation so as to allow for testing in a form that is able to serve for direct clinical use. The mechanical properties were studied via the uniaxial tensile testing method. The in vivo rifampin-release properties were tested by means of a series of incubations in phosphate-buffered saline. The microbiological activity was tested against methicillin-resistant staphylococcus aureus (MRSA) employing disc diffusion tests, and the in vivo pharmacokinetics was tested using a rat model. A histological examination was conducted for the study of the biocompatibility of the dressings. RESULTS: The sandwich-structured dressing demonstrated better mechanical properties due to its exhibiting ability to bear a higher load than the homogeneous sponges, a property that was further improved via the addition of rifampin. The sponges retarded the release of rifampin in vitro, which translated into at least 22 hours of rifampin release in the rat model. This was significantly longer than was achieved via the administration of a subcutaneous rifampin solution. Microbiological activity was proven by the results of the disc diffusion tests. Both sponges exhibited excellent biocompatibility as the cells penetrated into the scaffold, and virtually no signs of local irritation were observed. CONCLUSIONS: We present a novel rifampin-releasing sandwich-structured fresh water fish collagen wound dressing that has the potential to serve as an ideal surgical site infection protection and/or treatment agent.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Biofilms drug effects MeSH
- Wound Healing drug effects MeSH
- Surgical Wound Infection drug therapy MeSH
- Collagen pharmacology MeSH
- Rats MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects MeSH
- Bandages MeSH
- Rats, Wistar MeSH
- Rifampin pharmacology MeSH
- Fishes metabolism MeSH
- Fresh Water MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Collagen MeSH
- Rifampin MeSH
A composite nanofibrous layer containing collagen and hydroxyapatite was deposited on selected surface areas of titanium acetabular cups. The layer was deposited on the irregular surface of these 3D objects using a specially developed electrospinning system designed to ensure the stability of the spinning process and to produce a layer approximately 100 micrometers thick with an adequate thickness uniformity. It was verified that the layer had the intended nanostructured morphology throughout its entire thickness and that the prepared layer sufficiently adhered to the smooth surface of the model titanium implants even after all the post-deposition sterilization and stabilization treatments were performed. The resulting layers had an average thickness of (110 ± 30) micrometers and an average fiber diameter of (170 ± 49) nanometers. They were produced using a relatively simple and cost-effective technology and yet they were verifiably biocompatible and structurally stable. Collagen- and hydroxyapatite-based composite nanostructured surface modifications represent promising surface treatment options for metal implants.
- Keywords
- collagen composite, electrospinning, hydroxyapatite, nanofibers, titanium implant,
- MeSH
- Nanostructures * chemistry ultrastructure MeSH
- Spectrum Analysis, Raman MeSH
- Static Electricity * MeSH
- Publication type
- Journal Article MeSH
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
- Keywords
- biomimetic, calcium phosphate, protein template,
- Publication type
- Journal Article MeSH
- Review MeSH