Most cited article - PubMed ID 28715628
Accurate DFT-D3 Calculations in a Small Basis Set
A series of 12-phenyl-closo-thiaboranes (12-(4-X-C6H4)-closo-1-SB11H10, where X = OMe (2), X = SMe (3), X = Ph (4), and X = NMe2 (5)) has been prepared. Except for 2, all compounds exhibit a chalcogen bond of thiaborane to the phenyl ring or the neighboring molecule as major supramolecular structural motif. 5, having the strongest (-12.47 kcal/mol) structure-making intermolecular interaction via noncovalent S···π(phenyl) chalcogen bond, was crystallized from different solvents in the form of various solvatopolymorphs. n-Hexane and diethyl ether can be removed from 5 easily upon the formation of a porous material with large cavities (up to 20.5% of the unit cell). This first stable and useful noncovalently bound organic framework material with an ultramicroporous structure exhibits a molecular sieve effect. The selective and repeatable adsorption of CO2 to the material crystallized from n-hexane was explained on the basis of cooperative and consecutive machine-like molecular interactions of quadrupolar CO2 molecule with B-H and amino groups inside rectangular cavities.
- Publication type
- Journal Article MeSH
We designed a minimalistic zinc(II)-binding peptide featuring the Cys2His2 zinc-finger motif. To this aim, several tens of thousands of (His/Cys)-Xn-(His/Cys) protein fragments (n=2-20) were first extracted from the 3D protein structures deposited in Protein Data Bank (PDB). Based on geometrical constraints positioning two Cys (C) and two His (H) side chains at the vertices of a tetrahedron, approximately 22 000 sequences of the (H/C)-Xi-(H/C)-Xj-(H/C)-Xk-(H/C) type, satisfying Nmetal-binding H=Nmetal-binding C=2, were processed. Several other criteria, such as the secondary structure content and predicted fold stability, were then used to select the best candidates. To prove the viability of the computational design experimentally, three peptides were synthesized and subjected to isothermal calorimetry (ITC) measurements to determine the binding constants with Zn2+, including the entropy and enthalpy terms. For the strongest Zn2+ ions binding peptide, P1, the dissociation constant was shown to be in the nanomolar range (KD=~220 nM; corresponding to ΔGbind=-9.1 kcal mol-1). In addition, ITC showed that the [P1 : Zn2+] complex forms in 1 : 1 stoichiometry and two protons are released upon binding, which suggests that the zinc coordination involves both cysteines. NMR experiments also indicated that the structure of the [P1 : Zn2+] complex might be quite similar to the computationally predicted one. In summary, our proof-of-principle study highlights the usefulness of our computational protocol for designing novel metal-binding peptides.
- Keywords
- Computer design, Isothermal calorimetry, Metal-binding peptide, NMR, QM modeling, Zinc(II),
- MeSH
- Models, Molecular MeSH
- Peptides * chemistry metabolism chemical synthesis MeSH
- Amino Acid Sequence MeSH
- Thermodynamics MeSH
- Protein Binding MeSH
- Zinc * chemistry metabolism MeSH
- Zinc Fingers MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Peptides * MeSH
- Zinc * MeSH
Machine learning (ML) methods offer a promising route to the construction of universal molecular potentials with high accuracy and low computational cost. It is becoming evident that integrating physical principles into these models, or utilizing them in a Δ-ML scheme, significantly enhances their robustness and transferability. This paper introduces PM6-ML, a Δ-ML method that synergizes the semiempirical quantum-mechanical (SQM) method PM6 with a state-of-the-art ML potential applied as a universal correction. The method demonstrates superior performance over standalone SQM and ML approaches and covers a broader chemical space than its predecessors. It is scalable to systems with thousands of atoms, which makes it applicable to large biomolecular systems. Extensive benchmarking confirms PM6-ML's accuracy and robustness. Its practical application is facilitated by a direct interface to MOPAC. The code and parameters are available at https://github.com/Honza-R/mopac-ml.
- Publication type
- Journal Article MeSH
Schistosomiasis, caused by a parasitic blood fluke of the genus Schistosoma, is a global health problem for which new chemotherapeutic options are needed. We explored the scaffold of gallinamide A, a natural peptidic metabolite of marine cyanobacteria that has previously been shown to inhibit cathepsin L-type proteases. We screened a library of 19 synthetic gallinamide A analogs and identified nanomolar inhibitors of the cathepsin B-type protease SmCB1, which is a drug target for the treatment of schistosomiasis mansoni. Against cultured S. mansoni schistosomula and adult worms, many of the gallinamides generated a range of deleterious phenotypic responses. Imaging with a fluorescent-activity-based probe derived from gallinamide A demonstrated that SmCB1 is the primary target for gallinamides in the parasite. Furthermore, we solved the high-resolution crystal structures of SmCB1 in complex with gallinamide A and its two analogs and describe the acrylamide covalent warhead and binding mode in the active site. Quantum chemical calculations evaluated the contribution of individual positions in the peptidomimetic scaffold to the inhibition of the target and demonstrated the importance of the P1' and P2 positions. Our study introduces gallinamides as a powerful chemotype that can be exploited for the development of novel antischistosomal chemotherapeutics.
- Keywords
- Schistosoma mansoni, acrylamide inhibitor, cathepsin B, cysteine protease, drug target, parasite,
- MeSH
- Cathepsin B * antagonists & inhibitors metabolism MeSH
- Crystallography, X-Ray MeSH
- Models, Molecular MeSH
- Schistosoma mansoni * enzymology drug effects MeSH
- Schistosomicides pharmacology chemistry MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cathepsin B * MeSH
- Schistosomicides MeSH
Accurate estimation of protein-ligand binding affinity is the cornerstone of computer-aided drug design. We present a universal physics-based scoring function, named SQM2.20, addressing key terms of binding free energy using semiempirical quantum-mechanical computational methods. SQM2.20 incorporates the latest methodological advances while remaining computationally efficient even for systems with thousands of atoms. To validate it rigorously, we have compiled and made available the PL-REX benchmark dataset consisting of high-resolution crystal structures and reliable experimental affinities for ten diverse protein targets. Comparative assessments demonstrate that SQM2.20 outperforms other scoring methods and reaches a level of accuracy similar to much more expensive DFT calculations. In the PL-REX dataset, it achieves excellent correlation with experimental data (average R2 = 0.69) and exhibits consistent performance across all targets. In contrast to DFT, SQM2.20 provides affinity predictions in minutes, making it suitable for practical applications in hit identification or lead optimization.
- MeSH
- Ligands MeSH
- Proteins * metabolism MeSH
- Drug Design * MeSH
- Thermodynamics MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ligands MeSH
- Proteins * MeSH
Certain peptide sequences, some of them as short as amino acid triplets, are significantly overpopulated in specific secondary structure motifs in folded protein structures. For example, 74% of the EAM triplet is found in α-helices, and only 3% occurs in the extended parts of proteins (typically β-sheets). In contrast, other triplets (such as VIV and IYI) appear almost exclusively in extended parts (79% and 69%, respectively). In order to determine whether such preferences are structurally encoded in a particular peptide fragment or appear only at the level of a complex protein structure, NMR, VCD, and ECD experiments were carried out on selected tripeptides: EAM (denoted as pro-'α-helical' in proteins), KAM(α), ALA(α), DIC(α), EKF(α), IYI(pro-β-sheet or more generally, pro-extended), and VIV(β), and the reference α-helical CATWEAMEKCK undecapeptide. The experimental data were in very good agreement with extensive quantum mechanical conformational sampling. Altogether, we clearly showed that the pro-helical vs. pro-extended propensities start to emerge already at the level of tripeptides and can be fully developed at longer sequences. We postulate that certain short peptide sequences can be considered minimal "folding seeds". Admittedly, the inherent secondary structure propensity can be overruled by the large intramolecular interaction energies within the folded and compact protein structures. Still, the correlation of experimental and computational data presented herein suggests that the secondary structure propensity should be considered as one of the key factors that may lead to understanding the underlying physico-chemical principles of protein structure and folding from the first principles.
- Publication type
- Journal Article MeSH
In this theoretical study, we set out to demonstrate the substitution effect of PEDOT analogues on planarity as an intrinsic indicator for electronic performance. We perform a quantum mechanical (DFT) study of PEDOT and analogous model systems and demonstrate the usefulness of the ωB97X-V functional to simulate chalcogen bonds and other noncovalent interactions. We confirm that the chalcogen bond stabilizes the planar conformation and further visualize its presence via the electrostatic potential surface. In comparison to the prevalent B3LYP, we gain 4-fold savings in computational time and simulate model systems of up to a dodecamer. Implications for design of conductive polymers can be drawn from the results, and an example for self-doped polymers is presented where modulation of the strength of the chalcogen bond plays a significant role.
- Publication type
- Journal Article MeSH
Schistosomiasis, a parasitic disease caused by blood flukes of the genus Schistosoma, is a global health problem with over 200 million people infected. Treatment relies on just one drug, and new chemotherapies are needed. Schistosoma mansoni cathepsin B1 (SmCB1) is a critical peptidase for the digestion of host blood proteins and a validated drug target. We screened a library of peptidomimetic vinyl sulfones against SmCB1 and identified the most potent SmCB1 inhibitors reported to date that are active in the subnanomolar range with second order rate constants (k2nd) of ∼2 × 105 M-1 s-1. High resolution crystal structures of the two best inhibitors in complex with SmCB1 were determined. Quantum chemical calculations of their respective binding modes identified critical hot spot interactions in the S1' and S2 subsites. The most potent inhibitor targets the S1' subsite with an N-hydroxysulfonic amide moiety and displays favorable functional properties, including bioactivity against the pathogen, selectivity for SmCB1 over human cathepsin B, and reasonable metabolic stability. Our results provide structural insights for the rational design of next-generation SmCB1 inhibitors as potential drugs to treat schistosomiasis.
- Keywords
- Schistosoma mansoni, cathepsin B, cysteine peptidase, drug target, parasite, vinyl sulfone inhibitor,
- MeSH
- Cathepsin B * MeSH
- Humans MeSH
- Schistosoma mansoni MeSH
- Schistosomiasis * drug therapy MeSH
- Sulfones pharmacology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- divinyl sulfone MeSH Browser
- Cathepsin B * MeSH
- Sulfones MeSH
Azapeptide nitriles are postulated to reversibly covalently react with the active-site cysteine residue of cysteine proteases and form isothiosemicarbazide adducts. We investigated the interaction of azadipeptide nitriles with the cathepsin B1 drug target (SmCB1) from Schistosoma mansoni, a pathogen that causes the global neglected disease schistosomiasis. Azadipeptide nitriles were superior inhibitors of SmCB1 over their parent carba analogs. We determined the crystal structure of SmCB1 in complex with an azadipeptide nitrile and analyzed the reaction mechanism using quantum chemical calculations. The data demonstrate that azadipeptide nitriles, in contrast to their carba counterparts, undergo a change from E- to Z-configuration upon binding, which gives rise to a highly favorable energy profile of noncovalent and covalent complex formation. Finally, azadipeptide nitriles were considerably more lethal than their carba analogs against the schistosome pathogen in culture, supporting the further development of this chemotype as a treatment for schistosomiasis.
- Keywords
- azapeptide inhibitors, cysteine proteases, protein structures, schistosomiasis, structure−activity relationships,
- MeSH
- Cathepsin B MeSH
- Peptide Hydrolases * MeSH
- Schistosoma mansoni * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Cathepsin B MeSH
- Peptide Hydrolases * MeSH
Although 1-Ph-2-X-closo-1,2-C2B10H10 (X = F, Cl, Br, I) derivatives had been computed to have positive values of the heat of formation, it was possible to prepare them. The corresponding solid-state structures were computationally analyzed. Electrostatic potential computations indicated the presence of highly positive σ-holes in the case of heavy halogens. Surprisingly, the halogen•••π interaction formed by the Br atom was found to be more favorable than that of I.
- Keywords
- halogen bond, icosahedral boron cluster, sigma hole,
- MeSH
- Halogenation MeSH
- Halogens chemistry MeSH
- Molecular Conformation MeSH
- Models, Molecular MeSH
- Boron Compounds chemical synthesis chemistry MeSH
- Chemistry Techniques, Synthetic MeSH
- Carbon chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Halogens MeSH
- Boron Compounds MeSH
- Carbon MeSH