Nejvíce citovaný článek - PubMed ID 29875410
Environment and host as large-scale controls of ectomycorrhizal fungi
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
- Klíčová slova
- alpine soils, bacteria, biogeography, cryptogams, fungi, invertebrates, lichens, microbial diversity, protists, systematic mapping,
- MeSH
- Bacteria klasifikace MeSH
- biodiverzita * MeSH
- nadmořská výška * MeSH
- půda * MeSH
- půdní mikrobiologie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- půda * MeSH
Fungi are an integral part of the nitrogen and phosphorus cycling in trophic networks, as they participate in biomass decomposition and facilitate plant nutrition through root symbioses. Nutrient content varies considerably between the main fungal habitats, such as soil, plant litter or decomposing dead wood, but there are also large differences within habitats. While some soils are heavily loaded with N, others are limited by N or P. One way in which nutrient availability can be reflected in fungi is their content in biomass. In this study, we determined the C, N, and P content (in dry mass) of fruiting bodies of 214 fungal species to inspect how phylogeny and membership in ecological guilds (soil saprotrophs, wood saprotrophs, and ectomycorrhizal fungi) affect the nutrient content of fungal biomass. The C content of fruiting bodies (415 ± 25 mg g-1) showed little variation (324-494 mg g-1), while the range of N (46 ± 20 mg g-1) and P (5.5 ± 3.0 mg g-1) contents was within one order of magnitude (8-103 mg g-1 and 1.0-18.9 mg g-1, respectively). Importantly, the N and P contents were significantly higher in the biomass of soil saprotrophic fungi compared to wood saprotrophic and ectomycorrhizal fungi. While the average C/N ratio in fungal biomass was 11.2, values exceeding 40 were recorded for some fungi living on dead wood, typically characterized by low N content. The N and P content of fungal mycelium also showed a significant phylogenetic signal, with differences in nutrient content being relatively low within species and genera of fungi. A strong correlation was found between N and P content in fungal biomass, while the correlation of N content and the N-containing fungal cell wall biopolymer-chitin showed only weak significance. The content of macronutrients in fungal biomass is influenced by the fungal life style and nutrient availability and is also limited by phylogeny.
- Klíčová slova
- ecological traits, fungal biomass composition, nutrient content variation, nutrient stoichiometry, phylogenetic signal,
- Publikační typ
- časopisecké články MeSH
Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.
Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms.
- Klíčová slova
- biodiversity, biogeography, climate change, conservation priorities, global change vulnerability, global maps, mycorrhizal fungi, pathogens, saprotrophs,
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- houby MeSH
- lesy MeSH
- lidé MeSH
- mykorhiza * MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- rostliny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
Microbial life represents the majority of Earth's biodiversity. Across disparate disciplines from medicine to forestry, scientists continue to discover how the microbiome drives essential, macro-scale processes in plants, animals and entire ecosystems. Yet, there is an emerging realization that Earth's microbial biodiversity is under threat. Here we advocate for the conservation and restoration of soil microbial life, as well as active incorporation of microbial biodiversity into managed food and forest landscapes, with an emphasis on soil fungi. We analyse 80 experiments to show that native soil microbiome restoration can accelerate plant biomass production by 64% on average, across ecosystems. Enormous potential also exists within managed landscapes, as agriculture and forestry are the dominant uses of land on Earth. Along with improving and stabilizing yields, enhancing microbial biodiversity in managed landscapes is a critical and underappreciated opportunity to build reservoirs, rather than deserts, of microbial life across our planet. As markets emerge to engineer the ecosystem microbiome, we can avert the mistakes of aboveground ecosystem management and avoid microbial monocultures of single high-performing microbial strains, which can exacerbate ecosystem vulnerability to pathogens and extreme events. Harnessing the planet's breadth of microbial life has the potential to transform ecosystem management, but it requires that we understand how to monitor and conserve the Earth's microbiome.
- MeSH
- biodiverzita * MeSH
- lesy MeSH
- mikrobiota * MeSH
- půda MeSH
- Země (planeta) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- půda MeSH
Soil fungi play indispensable roles in all ecosystems including the recycling of organic matter and interactions with plants, both as symbionts and pathogens. Past observations and experimental manipulations indicate that projected global change effects, including the increase of CO2 concentration, temperature, change of precipitation and nitrogen (N) deposition, affect fungal species and communities in soils. Although the observed effects depend on the size and duration of change and reflect local conditions, increased N deposition seems to have the most profound effect on fungal communities. The plant-mutualistic fungal guilds - ectomycorrhizal fungi and arbuscular mycorrhizal fungi - appear to be especially responsive to global change factors with N deposition and warming seemingly having the strongest adverse effects. While global change effects on fungal biodiversity seem to be limited, multiple studies demonstrate increases in abundance and dispersal of plant pathogenic fungi. Additionally, ecosystems weakened by global change-induced phenomena, such as drought, are more vulnerable to pathogen outbreaks. The shift from mutualistic fungi to plant pathogens is likely the largest potential threat for the future functioning of natural and managed ecosystems. However, our ability to predict global change effects on fungi is still insufficient and requires further experimental work and long-term observations. Citation: Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P (2022). Fungal communities in soils under global change. Studies in Mycology 103: 1-24. doi: 10.3114/sim.2022.103.01.
- Klíčová slova
- deposition, drought, elevated CO2, global change, mycorrhiza, nitrogen, warming,
- Publikační typ
- časopisecké články MeSH
Understanding and describing the diversity of living organisms is a great challenge. Fungi have for a long time been, and unfortunately still are, underestimated when it comes to taxonomic research. The foundations were laid by the first mycologists through field observations. These important fundamental works have been and remain vital reference works. Nevertheless, a non-negligible part of the studied funga escaped their attention. Thanks to modern developments in molecular techniques, the study of fungal diversity has been revolutionized in terms of tools and knowledge. Despite a number of disadvantages inherent to these techniques, traditional field-based inventory work has been increasingly superseded and neglected. This perspective aims to demonstrate the central importance of field-based research in fungal diversity studies, and encourages researchers not to be blinded by the sole use of molecular methods.
- Klíčová slova
- fieldwork, fungal conservation, fungal diversity, genetics, monitoring, taxonomy,
- Publikační typ
- časopisecké články MeSH
Due to ongoing climate change, forests are expected to face significant disturbances more frequently than in the past. Appropriate management is intended to facilitate forest regeneration. Because European temperate forests mostly consist of trees associated with ectomycorrhizal (ECM) fungi, understanding their role in these disturbances is important to develop strategies to minimize their consequences and effectively restore forests. Our aim was to determine how traditional (EXT) and nonintervention (NEX) management in originally Norway spruce (Picea abies) forests with an admixture of European larch (Larix decidua) affect ECM fungal communities and the potential to interconnect different tree species via ECM networks 15 years after a windstorm. Ten plots in NEX and 10 plots in EXT with the co-occurrences of Norway spruce, European larch, and silver birch (Betula pendula) were selected, and a total of 57 ECM taxa were identified using ITS sequencing from ECM root tips. In both treatments, five ECM species associated with all the studied tree species dominated, with a total abundance of approximately 50% in the examined root samples. Because there were no significant differences between treatments in the number of ECM species associated with different tree species combinations in individual plots, we concluded that the management type did not have a significant effect on networking. However, management significantly affected the compositions of ECM symbionts of Norway spruce and European larch but not those of silver birch. Although this result is explained by the occurrence of seedlings and ECM propagules that were present in the original forest, the consequences are difficult to assess without knowledge of the ecology of different ECM symbionts.
- Klíčová slova
- disturbances, diversity, ectomycorrhizal fungi, exploration types, mycorrhizal networks,
- Publikační typ
- časopisecké články MeSH
Belowground litter derived from tree roots has been shown as a principal source of soil organic matter in coniferous forests. Fate of tree root necromass depends on fungal communities developing on the decaying roots. Local environmental conditions which affect composition of tree root mycobiome may also influence fungal communities developing on decaying tree roots. Here, we assessed fungal communities associated with decaying roots of Picea abies decomposing in three microhabitats: soil with no vegetation, soil with ericoid shrubs cover, and P. abies deadwood, for a 2-year period. Forest microhabitat showed stronger effect on structuring fungal communities associated with decaying roots compared to living roots. Some ericoid mycorrhizal fungi showed higher relative abundance on decaying roots in soils under ericoid shrub cover, while saprotrophic fungi had higher relative abundance in roots decomposing inside deadwood. Regardless of the studied microhabitat, we observed decline of ectomycorrhizal fungi and increase of endophytic fungi during root decomposition. Interestingly, we found substantially more fungal taxa with unknown ecology in late stages of root decomposition, indicating that highly decomposed roots may represent so far overlooked niche for soil fungi. Our study shows the importance of microhabitats on the fate of the decomposing spruce roots.
- Klíčová slova
- Norway spruce, dark septate endophytes, forest ecosystem, forest microhabitats, fungal communities, root litter, soil organic matter, stem decapitation,
- Publikační typ
- časopisecké články MeSH
PREMISE OF THE STUDY: Fungal diversity (richness) trends at large scales are in urgent need of investigation, especially through novel situations that combine long-term observational with environmental and remotely sensed open-source data. METHODS: We modeled fungal richness, with collections-based records of saprotrophic (decaying) and ectomycorrhizal (plant mutualistic) fungi, using an array of environmental variables across geographical gradients from northern to central Europe. Temporal differences in covariables granted insight into the impacts of the shorter- versus longer-term environment on fungal richness. RESULTS: Fungal richness varied significantly across different land-use types, with highest richness in forests and lowest in urban areas. Latitudinal trends supported a unimodal pattern in diversity across Europe. Temperature, both annual mean and range, was positively correlated with richness, indicating the importance of seasonality in increasing richness amounts. Precipitation seasonality notably affected saprotrophic fungal diversity (a unimodal relationship), as did daily precipitation of the collection day (negatively correlated). Ectomycorrhizal fungal richness differed from that of saprotrophs by being positively associated with tree species richness. DISCUSSION: Our results demonstrate that fungal richness is strongly correlated with land use and climate conditions, especially concerning seasonality, and that ongoing global change processes will affect fungal richness patterns at large scales.
- Klíčová slova
- collections data, diversity, fungi, macroecology, open‐source, phenology records,
- Publikační typ
- časopisecké články MeSH