Most cited article - PubMed ID 30231521
Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks
Heavy water (D2O) is scarce in nature, and despite its physical similarity to water, D2O disrupts cellular function due to the isotope effect. While microbes can survive in nearly pure D2O, eukaryotes such as Arabidopsis thaliana are more sensitive and are unable to survive higher concentrations of D2O. To explore the underlying molecular mechanisms for these differences, we conducted a comparative proteomic analysis of E. coli, S. cerevisiae, and Arabidopsis after 180 min of growth in a D2O-supplemented media. Shared adaptive mechanisms across these species were identified, including changes in ribosomal protein abundances, accumulation of chaperones, and altered metabolism of polyamines and amino acids. However, Arabidopsis exhibited unique vulnerabilities, such as a muted stress response, lack of rapid activation of reactive oxygen species metabolism, and depletion of stress phytohormone abscisic acid signaling components. Experiments with mutants show that modulating the HSP70 pool composition may promote D2O resilience. Additionally, Arabidopsis rapidly incorporated deuterium into sucrose, indicating that photosynthesis facilitates deuterium intake. These findings provide valuable insights into the molecular mechanisms that dictate differential tolerance to D2O across species and lay the groundwork for further studies on the biological effects of uncommon isotopes, with potential implications for biotechnology and environmental science.
- Keywords
- HSP70, ROS metabolism, adaptation, deuterium oxide, proteome, stress response,
- Publication type
- Journal Article MeSH
Plants are sessile organisms forced to adapt to environmental variations recurring in a day-night cycle. Extensive research has uncovered the transcriptional control of plants' inner clock and has revealed at least some part of the intricate and elaborate regulatory mechanisms that govern plant diel responses and provide adaptation to the ever-changing environment. Here, we analyzed the proteome of the Arabidopsis thaliana mutant genotypes collected in the middle of the day and the middle of the night, including four mutants in the phytochrome (phyA, phyB, phyC, and phyD) and the circadian clock protein LHY. Our approach provided a novel insight into the diel regulations, identifying 640 significant changes in the night-day protein abundance. The comparison with previous studies confirmed that a large portion of identified proteins was a known target of diurnal regulation. However, more than 300 were novel oscillations hidden under standard growth chamber conditions or not manifested in the wild type. Our results indicated a prominent role for ROS metabolism and phytohormone cytokinin in the observed regulations, and the consecutive analyses confirmed that. The cytokinin signaling significantly increased at night, and in the mutants, the hydrogen peroxide content was lower, and the night-day variation seemed to be lost in the phyD genotype. Furthermore, regulations in the lhy and phyB mutants were partially similar to those found in the catalase mutant cat2, indicating shared ROS-mediated signaling pathways. Our data also shed light on the role of the relatively poorly characterized Phytochrome D, pointing to its connection to glutathione metabolism and the regulation of glutathione S-transferases.
- Keywords
- cytokinin, diurnal, glutathione metabolism, light, peroxide, phytochrome, signaling,
- MeSH
- Apoproteins metabolism MeSH
- Arabidopsis * metabolism MeSH
- Cytokinins metabolism MeSH
- Phytochrome B metabolism MeSH
- Phytochrome * genetics metabolism MeSH
- Glutathione metabolism MeSH
- Arabidopsis Proteins * genetics metabolism MeSH
- Proteome genetics metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Apoproteins MeSH
- Cytokinins MeSH
- Phytochrome B MeSH
- Phytochrome * MeSH
- Glutathione MeSH
- PHYD protein, Arabidopsis MeSH Browser
- Arabidopsis Proteins * MeSH
- Proteome MeSH
- Reactive Oxygen Species MeSH
Poplars are among the fastest-growing trees and significant resources in agriculture and forestry. However, rapid growth requires a large water consumption, and irrigation water provides a natural means for pathogen spread. That includes members of Phytophthora spp. that have proven to be a global enemy to forests. With the known adaptability to new hosts, it is only a matter of time for more aggressive Phytophthora species to become a threat to poplar forests and plantations. Here, the effects of artificial inoculation with two different representatives of aggressive species (P. cactorum and P. plurivora) were analyzed in the proteome of the Phytophthora-tolerant hybrid poplar clone T-14 [Populus tremula L. 70 × (Populus × canescens (Ait.) Sm. 23)]. Wood microcore samples were collected at the active necrosis borders to provide insight into the molecular processes underlying the observed tolerance to Phytophthora. The analysis revealed the impact of Phytophthora on poplar primary and secondary metabolism, including carbohydrate-active enzymes, amino acid biosynthesis, phenolic metabolism, and lipid metabolism, all of which were confirmed by consecutive metabolome and lipidome profiling. Modulations of enzymes indicating systemic response were confirmed by the analysis of leaf proteome, and sampling of wood microcores in distal locations revealed proteins with abundance correlating with proximity to the infection, including germin-like proteins, components of proteosynthesis, glutamate carboxypeptidase, and an enzyme that likely promotes anthocyanin stability. Finally, the identified Phytophthora-responsive proteins were compared to those previously found in trees with compromised defense against Phytophthora, namely, Quercus spp. and Castanea sativa. That provided a subset of candidate markers of Phytophthora tolerance, including certain ribosomal proteins, auxin metabolism enzymes, dioxygenases, polyphenol oxidases, trehalose-phosphate synthase, mannose-1-phosphate guanylyltransferase, and rhamnose biosynthetic enzymes. In summary, this analysis provided the first insight into the molecular mechanisms of hybrid poplar defense against Phytophthora and identified prospective targets for improving Phytophthora tolerance in trees.
- Keywords
- Phytophthora cactorum, Phytophthora plurivora, Populus, biotic interaction, lipidome, metabolome, proteome,
- Publication type
- Journal Article MeSH
Low temperature decreases PSII damage in vivo, confirming earlier in vitro results. Susceptibility to photoinhibition differs among Arabidopsis accessions and moderately decreases after 2-week cold-treatment. Flavonols may alleviate photoinhibition. The rate of light-induced inactivation of photosystem II (PSII) at 22 and 4 °C was measured from natural accessions of Arabidopsis thaliana (Rschew, Tenela, Columbia-0, Coimbra) grown under optimal conditions (21 °C), and at 4 °C from plants shifted to 4 °C for 2 weeks. Measurements were done in the absence and presence of lincomycin (to block repair). PSII activity was assayed with the chlorophyll a fluorescence parameter Fv/Fm and with light-saturated rate of oxygen evolution using a quinone acceptor. When grown at 21 °C, Rschew was the most tolerant to photoinhibition and Coimbra the least. Damage to PSII, judged from fitting the decrease in oxygen evolution or Fv/Fm to a first-order equation, proceeded more slowly or equally at 4 than at 22 °C. The 2-week cold-treatment decreased photoinhibition at 4 °C consistently in Columbia-0 and Coimbra, whereas in Rschew and Tenela the results depended on the method used to assay photoinhibition. The rate of singlet oxygen production by isolated thylakoid membranes, measured with histidine, stayed the same or slightly decreased with decreasing temperature. On the other hand, measurements of singlet oxygen from leaves with Singlet Oxygen Sensor Green suggest that in vivo more singlet oxygen is produced at 4 °C. Under high light, the PSII electron acceptor QA was more reduced at 4 than at 22 °C. Singlet oxygen production, in vitro or in vivo, did not decrease due to the cold-treatment. Epidermal flavonols increased during the cold-treatment and, in Columbia-0 and Coimbra, the amount correlated with photoinhibition tolerance.
- Keywords
- Acclimation, Charge recombination, Chilling stress, Cold-hardening, Photodamage, Photoinactivation, Reactive oxygen species, SOSG,
- MeSH
- Acclimatization MeSH
- Arabidopsis physiology radiation effects MeSH
- Chlorophyll A analysis MeSH
- Fluorescence MeSH
- Photosystem II Protein Complex metabolism radiation effects MeSH
- Plant Leaves physiology radiation effects MeSH
- Cold Temperature MeSH
- Singlet Oxygen metabolism radiation effects MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll A MeSH
- Photosystem II Protein Complex MeSH
- Singlet Oxygen MeSH
In plants, there is a complex and multilevel network of the antioxidative system (AOS) operating to counteract harmful reactive species (RS), the foremost important of which are reactive oxygen species (ROS), and maintain homeostasis within the cell. Specific AOSs for plant cells are, first and foremost, enzymes of the glutathione-ascorbate cycle (Asc-GSH), followed by phenolic compounds and lipophilic antioxidants like carotenoids and tocopherols. Evidence that plant cells have excellent antioxidative defense systems is their ability to survive at H2O2 concentrations incompatible with animal cell life. For the survival of stressed plants, it is of particular importance that AOS cooperate and participate in redox reactions, therefore, providing better protection and regeneration of the active reduced forms. Considering that plants abound in antioxidant compounds, and humans are not predisposed to synthesize the majority of them, new fields of research have emerged. Antioxidant potential of plant compounds has been exploited for anti-aging formulations preparation, food fortification and preservation but also in designing new therapies for diseases with oxidative stress implicated in etiology.
- Keywords
- antioxidative defence system, cell, oxidative stress, plants, reactive oxygen species,
- Publication type
- Journal Article MeSH
- Review MeSH
Hydrogen peroxide promotes seed germination, but the molecular mechanisms underlying this process are unclear. This study presents the results of eggplant (Solanum melongena) germination analyses conducted at two different temperatures and follows the effect of hydrogen peroxide treatment on seed germination and the seed proteome. Hydrogen peroxide was found to promote eggplant germination in a way not dissimilar to that of increased temperature stimuli. LC-MS profiling detected 729 protein families, 77 of which responded to a temperature increase or hydrogen peroxide treatment. These differentially abundant proteins were found to be involved in a number of processes, including protein and amino acid metabolism, carbohydrate metabolism, and the glyoxylate cycle. There was a very low overlap between hydrogen peroxide and temperature-responsive proteins, highlighting the differences behind the seemingly similar outcomes. Furthermore, the observed changes from the seed proteome indicate that hydrogen peroxide treatment diminished the seed endogenous hydrogen peroxide pool and that a part of manifested positive hydrogen peroxide effect might be related to altered sensitivity to abscisic acid.
- Keywords
- eggplant, germination, hydrogen peroxide, proteomics, seed, temperature,
- MeSH
- Chromatography, Liquid MeSH
- Stress, Physiological drug effects MeSH
- Mass Spectrometry MeSH
- Germination drug effects MeSH
- Carbohydrate Metabolism drug effects MeSH
- Hydrogen Peroxide pharmacology MeSH
- Gene Expression Regulation, Plant drug effects MeSH
- Plant Proteins metabolism MeSH
- Solanum melongena drug effects physiology MeSH
- Temperature MeSH
- Gene Expression Regulation, Developmental drug effects MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hydrogen Peroxide MeSH
- Plant Proteins MeSH