Nejvíce citovaný článek - PubMed ID 30605316
DNA Quadruple Helices in Nanotechnology
Our study investigates the interaction of two bis-quinolinium ligands, Phen-DC3 and 360A, with the quadruplex-duplex hybrid (QDH) derived from the promoter region of the PIM1 oncogene. While the QDH is polymorphic in vitro, with a hybrid and antiparallel conformation, we demonstrate that it predominantly adopts the antiparallel conformation within the intracellular environment of Xenopus laevis oocytes (eukaryotic model system). Notably, both ligands selectively bind to the hybrid QDH conformation in vitro and in a cellular context. High-resolution nuclear magnetic resonance (NMR) structures of the complexes between the hybrid QDH and the ligands reveal distinct binding modes at the quadruplex-duplex (Q-D) junction. Specifically, Phen-DC3 binds rigidly, while 360A dynamically reorients between two positions. Our findings provide a crucial paradigm highlighting the differences in structural equilibria involving QDH in vitro compared to its behavior in the intracellular space. They also underscore the potential to modulate these equilibria under native-like conditions through ligand interactions. The observed differences in the binding of Phen-DC3 and 360A lay the groundwork for designing next-generation bis-quinolinium compounds with enhanced selectivity for the Q-D junction. Methodologically, our study illustrates the potential of 19F-detected in-cell NMR methodology for screening interactions between DNA targets and drug-like molecules under physiological conditions.
- MeSH
- chinolinové sloučeniny * chemie metabolismus MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- oocyty metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- protoonkogenní proteiny c-pim-1 * genetika chemie MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chinolinové sloučeniny * MeSH
- DNA MeSH
- ligandy MeSH
- PIM1 protein, human MeSH Prohlížeč
- protoonkogenní proteiny c-pim-1 * MeSH
RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging. Despite their significance, the atomic-level folding mechanisms of rG4s remain poorly understood due to their complexity. We studied the folding of the r(GGGA)3GGG and r(GGGUUA)3GGG (TERRA) sequences into parallel-stranded rG4 using all-atom enhanced-sampling molecular dynamics simulations, applying well-tempered metadynamics coupled with solute tempering. The obtained folding pathways suggest that RNA initially adopts a compacted coil-like ensemble characterized by dynamic guanine stacking and pairing. The three-quartet rG4 gradually forms from this compacted coil ensemble via diverse routes involving strand rearrangements and guanine incorporations. While the folding mechanism is multipathway, various two-quartet rG4 structures appear to be a common transitory ensemble along most routes. Thus, the process seems more complex than previously predicted, as G-hairpins or G-triplexes do not act as distinct intermediates, even though some are occasionally sampled. We also discuss the challenges of applying enhanced sampling methodologies to such a multidimensional free-energy surface and address the force-field limitations.
- MeSH
- G-kvadruplexy * MeSH
- guanin chemie MeSH
- konformace nukleové kyseliny MeSH
- RNA * chemie MeSH
- sbalování RNA MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanin MeSH
- RNA * MeSH
Aptamers are short DNA or RNA sequences that can fold into unique three-dimensional structures, enabling them to bind specifically to target molecules with high affinity, similar to antibodies. A distinctive feature of many aptamers is their ability to adopt a G-quadruplex (G4) fold, a four-stranded structure formed by guanine-rich sequences. While G4 formation has been proposed or demonstrated for some aptamers, we aimed to investigate how frequently quadruplex-prone motifs emerge from the SELEX process. To achieve this, we examined quadruplex candidate sequences from the UTexas Aptamer Database, which contains over 1400 aptamer sequences extracted from 400 publications spanning several decades. We analyzed the G4 and i-motif propensity of these sequences. While no likely i-motif forming candidates were found, nearly 1/4 of DNA aptamers and 1/6 of RNA aptamers were predicted to form G4 structures. Interestingly, many motifs capable of forming G4 structures were not previously reported or suspected. Out of 311 sequences containing a potential stable G4 motif, only 53 of them (17%) reported the word "quadruplex" in the corresponding article. We experimentally tested G4 formation for 30 aptamer sequences and were able to confirm G4 formation for all the sequences with a G4Hunter score of 1.31 or more. These observations suggest the need to reevaluate G4 propensity among aptamer sequences.
- MeSH
- aptamerová technika SELEX MeSH
- aptamery nukleotidové * chemie MeSH
- G-kvadruplexy * MeSH
- guanin chemie MeSH
- nukleotidové motivy MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aptamery nukleotidové * MeSH
- guanin MeSH
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
- Klíčová slova
- DNA quadruplex, computational folding, enhanced sampling, kinetic partitioning mechanism, metadynamics, molecular dynamics, nudged elastic band, pathCV, transition path sampling,
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- simulace molekulární dynamiky MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanosine tetrads. Despite their functional and structural diversity, a single consensus model is typically used to describe sequences with the potential to form G-quadruplex structures. We are interested in developing more specific sequence models for G-quadruplexes. In previous work, we functionally characterized each sequence in a 496-member library of variants of a monomeric reference G-quadruplex for the ability to bind GTP, promote a model peroxidase reaction, generate intrinsic fluorescence, and to form multimers. Here we used NMR to obtain a broad overview of the structural features of this library. After determining the 1H NMR spectrum of each of these 496 sequences, spectra were sorted into multiple classes, most of which could be rationalized based on mutational patterns in the primary sequence. A more detailed screen using representative sequences provided additional information about spectral classes, and confirmed that the classes determined based on analysis of 1H NMR spectra are correlated with functional categories identified in previous studies. These results provide new insights into the surprising structural diversity of this library. They also show how NMR can be used to identify classes of sequences with distinct mutational signatures and functions.
- Klíčová slova
- DNA, G-quadruplex, Multimeric structures, NMR,
- MeSH
- G-kvadruplexy * MeSH
- guanosintrifosfát chemie metabolismus MeSH
- magnetická rezonanční spektroskopie metody MeSH
- mutace MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanosintrifosfát MeSH
Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.
- Publikační typ
- časopisecké články MeSH
I-Motifs (iM) are non-canonical DNA structures potentially forming in the accessible, single-stranded, cytosine-rich genomic regions with regulatory roles. Chromatin, protein interactions, and intracellular properties seem to govern iM formation at sites with i-motif formation propensity (iMFPS) in human cells, yet their specific contributions remain unclear. Using in-cell NMR with oligonucleotide iMFPS models, we monitor iM-associated structural equilibria in asynchronous and cell cycle-synchronized HeLa cells at 37 °C. Our findings show that iMFPS displaying pHT < 7 under reference in vitro conditions occur predominantly in unfolded states in cells, while those with pHT > 7 appear as a mix of folded and unfolded states depending on the cell cycle phase. Comparing these results with previous data obtained using an iM-specific antibody (iMab) reveals that cell cycle-dependent iM formation has a dual origin, and iM formation concerns only a tiny fraction (possibly 1%) of genomic sites with iM formation propensity. We propose a comprehensive model aligning observations from iMab and in-cell NMR and enabling the identification of iMFPS capable of adopting iM structures under physiological conditions in living human cells. Our results suggest that many iMFPS may have biological roles linked to their unfolded states.
- MeSH
- azidy * MeSH
- benzazepiny * MeSH
- DNA MeSH
- HeLa buňky MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- protilátky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine MeSH Prohlížeč
- azidy * MeSH
- benzazepiny * MeSH
- DNA MeSH
- protilátky MeSH
For many decades it was thought that information storage and information transfer were the main functions of nucleic acids. However, artificial evolution experiments have shown that the functional potential of DNA and RNA is much greater. Here I provide an overview of this technique and highlight recent advances which have increased its potency. I also describe how artificial evolution has been used to identify nucleic acids with extreme functions. These include deoxyribozymes that generate unusual products such as light, tiny motifs made up of fewer than ten nucleotides, ribozymes that catalyze complex reactions such as RNA polymerization, information-rich sequences that encode overlapping ribozymes, motifs that catalyze reactions at rates too fast to be followed by manual pipetting, and functional nucleic acids which are active in extreme conditions. Such motifs highlight the limits of our knowledge and provide clues about as of yet undiscovered functions of DNA and RNA.
- Klíčová slova
- aptamer, deoxyribozyme, in vitro selection, ribozyme, supernova deoxyribozyme,
- MeSH
- DNA katalytická * metabolismus MeSH
- DNA MeSH
- konformace nukleové kyseliny MeSH
- nukleotidy MeSH
- nukleové kyseliny * MeSH
- RNA katalytická * metabolismus MeSH
- RNA genetika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA katalytická * MeSH
- DNA MeSH
- nukleotidy MeSH
- nukleové kyseliny * MeSH
- RNA katalytická * MeSH
- RNA MeSH
Genomic sequences susceptible to form G-quadruplexes (G4s) are always flanked by other nucleotides, but G4 formation in vitro is generally studied with short synthetic DNA or RNA oligonucleotides, for which bases adjacent to the G4 core are often omitted. Herein, we systematically studied the effects of flanking nucleotides on structural polymorphism of 371 different oligodeoxynucleotides that adopt intramolecular G4 structures. We found out that the addition of nucleotides favors the formation of a parallel fold, defined as the 'flanking effect' in this work. This 'flanking effect' was more pronounced when nucleotides were added at the 5'-end, and depended on loop arrangement. NMR experiments and molecular dynamics simulations revealed that flanking sequences at the 5'-end abolish a strong syn-specific hydrogen bond commonly found in non-parallel conformations, thus favoring a parallel topology. These analyses pave a new way for more accurate prediction of DNA G4 folding in a physiological context.
- MeSH
- cirkulární dichroismus MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- nukleotidy chemie genetika MeSH
- oligonukleotidy chemie genetika MeSH
- polymorfismus genetický genetika MeSH
- RNA genetika ultrastruktura MeSH
- simulace molekulární dynamiky MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- nukleotidy MeSH
- oligonukleotidy MeSH
- RNA MeSH
G-quadruplexes are noncanonical nucleic acid structures formed from stacked guanine tetrads. They are frequently used as building blocks and functional elements in fields such as synthetic biology and also thought to play widespread biological roles. G-quadruplexes are often studied as monomers, but can also form a variety of higher-order structures. This increases the structural and functional diversity of G-quadruplexes, and recent evidence suggests that it could also be biologically important. In this review, we describe the types of multimeric topologies adopted by G-quadruplexes and highlight what is known about their sequence requirements. We also summarize the limited information available about potential biological roles of multimeric G-quadruplexes and suggest new approaches that could facilitate future studies of these structures.
- Klíčová slova
- DNA:RNA hybrid, G-quadruplex, R-loop, dimer, multimer, oligomer, promoter, telomere, tetramer,
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny * MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- RNA chemie MeSH
- telomery MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- RNA MeSH