G-quadruplexes are noncanonical nucleic acid structures formed from stacked guanine tetrads. They are frequently used as building blocks and functional elements in fields such as synthetic biology and also thought to play widespread biological roles. G-quadruplexes are often studied as monomers, but can also form a variety of higher-order structures. This increases the structural and functional diversity of G-quadruplexes, and recent evidence suggests that it could also be biologically important. In this review, we describe the types of multimeric topologies adopted by G-quadruplexes and highlight what is known about their sequence requirements. We also summarize the limited information available about potential biological roles of multimeric G-quadruplexes and suggest new approaches that could facilitate future studies of these structures.
- Keywords
- DNA:RNA hybrid, G-quadruplex, R-loop, dimer, multimer, oligomer, promoter, telomere, tetramer,
- MeSH
- DNA chemistry MeSH
- G-Quadruplexes * MeSH
- Nucleic Acid Conformation * MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- RNA chemistry MeSH
- Telomere MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- DNA MeSH
- RNA MeSH
G-Quadruplexes are noncanonical nucleic acid structures made up of stacked guanosine tetrads connected by short loops. They are frequently used building blocks in synthetic biology and thought to play widespread biological roles. Multimerization can change the functional properties of G-quadruplexes, and understanding the factors that modulate this process remains an important goal. Here, we report the discovery of a novel mechanism by which the formation of multimeric G-quadruplexes can be controlled using GTP. We show that GTP likely inhibits multimer formation by becoming incorporated into a tetrad in the monomeric form of the structure and define the sequence requirements of G-quadruplexes that form GTP-dependent structures. These experiments provide new insights into the small molecule control of G-quadruplex multimerization. They also suggest possible roles for GTP-dependent multimeric G-quadruplexes in both synthetic and natural biological systems.
- MeSH
- Biochemical Phenomena MeSH
- DNA genetics metabolism MeSH
- G-Quadruplexes * MeSH
- Guanosine Triphosphate metabolism MeSH
- Humans MeSH
- Mutation MeSH
- Pan troglodytes MeSH
- Pongo MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Guanosine Triphosphate MeSH
Haloalkane dehalogenase (HLD) enzymes employ an SN 2 nucleophilic substitution mechanism to erase halogen substituents in diverse organohalogen compounds. Subfamily I and II HLDs are well-characterized enzymes, but the mode and purpose of multimerization of subfamily III HLDs are unknown. Here we probe the structural organization of DhmeA, a subfamily III HLD-like enzyme from the archaeon Haloferax mediterranei, by combining cryo-electron microscopy (cryo-EM) and x-ray crystallography. We show that full-length wild-type DhmeA forms diverse quaternary structures, ranging from small oligomers to large supramolecular ring-like assemblies of various sizes and symmetries. We optimized sample preparation steps, enabling three-dimensional reconstructions of an oligomeric species by single-particle cryo-EM. Moreover, we engineered a crystallizable mutant (DhmeAΔGG ) that provided diffraction-quality crystals. The 3.3 Å crystal structure reveals that DhmeAΔGG forms a ring-like 20-mer structure with outer and inner diameter of ~200 and ~80 Å, respectively. An enzyme homodimer represents a basic repeating building unit of the crystallographic ring. Three assembly interfaces (dimerization, tetramerization, and multimerization) were identified to form the supramolecular ring that displays a negatively charged exterior, while its interior part harboring catalytic sites is positively charged. Localization and exposure of catalytic machineries suggest a possible processing of large negatively charged macromolecular substrates.
- Keywords
- DhmeA, Haloferax mediterranei, catalysis, cryo-EM, haloalkane dehalogenase, multimerization, x-ray crystallography,
- MeSH
- Cryoelectron Microscopy methods MeSH
- Hydrolases * chemistry MeSH
- Crystallography, X-Ray MeSH
- Substrate Specificity MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- haloalkane dehalogenase MeSH Browser
- Hydrolases * MeSH
G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanosine tetrads. Despite their functional and structural diversity, a single consensus model is typically used to describe sequences with the potential to form G-quadruplex structures. We are interested in developing more specific sequence models for G-quadruplexes. In previous work, we functionally characterized each sequence in a 496-member library of variants of a monomeric reference G-quadruplex for the ability to bind GTP, promote a model peroxidase reaction, generate intrinsic fluorescence, and to form multimers. Here we used NMR to obtain a broad overview of the structural features of this library. After determining the 1H NMR spectrum of each of these 496 sequences, spectra were sorted into multiple classes, most of which could be rationalized based on mutational patterns in the primary sequence. A more detailed screen using representative sequences provided additional information about spectral classes, and confirmed that the classes determined based on analysis of 1H NMR spectra are correlated with functional categories identified in previous studies. These results provide new insights into the surprising structural diversity of this library. They also show how NMR can be used to identify classes of sequences with distinct mutational signatures and functions.
- Keywords
- DNA, G-quadruplex, Multimeric structures, NMR,
- MeSH
- G-Quadruplexes * MeSH
- Guanosine Triphosphate chemistry metabolism MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Mutation MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Guanosine Triphosphate MeSH
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna "designs" becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
- Keywords
- bacteriochlorophylls, carotenoids, chlorophylls, excitation energy transfer, light-harvesting complexes, photoprotection, photosynthesis, photosystems, pigment-protein complexes,
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Photosynthesis MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Protein Multimerization MeSH
- Energy Transfer MeSH
- Plant Proteins chemistry metabolism MeSH
- Plants metabolism MeSH
- Cyanobacteria metabolism MeSH
- Light-Harvesting Protein Complexes chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Plant Proteins MeSH
- Light-Harvesting Protein Complexes MeSH
Human LLT1 is a C-type lectin-like ligand of NKR-P1 (CD161, gene KLRB1), a C-type lectin-like receptor of natural killer cells. Using X-ray diffraction, the first experimental structures of human LLT1 were determined. Four structures of LLT1 under various conditions were determined: monomeric, dimeric deglycosylated after the first N-acetylglucosamine unit in two forms and hexameric with homogeneous GlcNAc2Man5 glycosylation. The dimeric form follows the classical dimerization mode of human CD69. The monomeric form keeps the same fold with the exception of the position of an outer part of the long loop region. The hexamer of glycosylated LLT1 consists of three classical dimers. The hexameric packing may indicate a possible mode of interaction of C-type lectin-like proteins in the glycosylated form.
- Keywords
- C-type lectin-like ligand, LLT1,
- MeSH
- Glycosylation MeSH
- Protein Structure, Quaternary MeSH
- NK Cell Lectin-Like Receptor Subfamily B chemistry genetics metabolism MeSH
- Lectins, C-Type chemistry genetics metabolism MeSH
- Humans MeSH
- Protein Multimerization * MeSH
- Receptors, Cell Surface chemistry genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CLEC2D protein, human MeSH Browser
- KLRB1 protein, human MeSH Browser
- NK Cell Lectin-Like Receptor Subfamily B MeSH
- Lectins, C-Type MeSH
- Receptors, Cell Surface MeSH
The Mason-Pfizer monkey virus is a prototype Betaretrovirus with the defining characteristic that it assembles spherical immature particles from Gag-related polyprotein precursors within the cytoplasm of the infected cell. It was shown previously that the N-terminal part of the Gag p12 domain (wt-Np12) is required for efficient assembly. However, the precise role for p12 in mediating Gag-Gag interaction is still poorly understood. In this study we employed detailed circular dichroism spectroscopy, electron microscopy and ultracentrifugation analyses of recombinant wt-Np12 prepared by in vitro transcription and translation. The wt-Np12 domain fragment forms fibrillar structures in a concentration-dependent manner. Assembly into fibers is linked to a conformational transition from unfolded or another non-periodical state to alpha-helix during multimerization.
- MeSH
- Circular Dichroism MeSH
- Microscopy, Electron MeSH
- Gene Products, gag chemistry MeSH
- Protein Conformation MeSH
- Protein Structure, Quaternary MeSH
- Mason-Pfizer monkey virus chemistry physiology MeSH
- Protein Multimerization * MeSH
- Protein Structure, Tertiary MeSH
- Ultracentrifugation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Gene Products, gag MeSH
- p12 protein, Mason-Pfizer monkey virus MeSH Browser
G-quadruplexes can multimerize under certain conditions, but the sequence requirements of such structures are not well understood. In this study, we investigated the ability of all possible variants of the central tetrad in a monomeric, parallel-strand G-quadruplex to form higher-order structures. Although most of these 256 variants existed primarily as monomers under the conditions of our screen, ∼10% formed dimers or tetramers. These structures could form in a wide range of monovalent and divalent metal ions, and folding was highly cooperative in both KCl and MgCl2. As was previously shown for G-quadruplexes that bind GTP and promote peroxidase reactions, G-quadruplexes that form dimers and tetramers have distinct sequence requirements. Some mutants could also form heteromultimers, and a second screen was performed to characterize the sequence requirements of these structures. Taken together, these experiments provide new insights into the sequence requirements and structures of both homomultimeric and heteromultimeric G-quadruplexes.
- MeSH
- Circular Dichroism MeSH
- DNA chemistry MeSH
- G-Quadruplexes * MeSH
- Cations, Divalent chemistry pharmacology MeSH
- Nucleic Acid Conformation MeSH
- Mutation physiology MeSH
- Polymerization MeSH
- Base Sequence MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA MeSH
- Cations, Divalent MeSH
UNLABELLED: The pollination services provided by the western honeybee (Apis mellifera) are critical for agricultural production and the diversity of wild flowering plants. However, honeybees suffer from environmental pollution, habitat loss, and pathogens, including viruses that can cause fatal diseases. Israeli acute bee paralysis virus (IAPV), from the family Dicistroviridae, has been shown to cause colony collapse disorder in the United States. Here, we present the IAPV virion structure determined to a resolution of 4.0 Å and the structure of a pentamer of capsid protein protomers at a resolution of 2.7 Å. IAPV has major capsid proteins VP1 and VP3 with noncanonical jellyroll β-barrel folds composed of only seven instead of eight β-strands, as is the rule for proteins of other viruses with the same fold. The maturation of dicistroviruses is connected to the cleavage of precursor capsid protein VP0 into subunits VP3 and VP4. We show that a putative catalytic site formed by the residues Asp-Asp-Phe of VP1 is optimally positioned to perform the cleavage. Furthermore, unlike many picornaviruses, IAPV does not contain a hydrophobic pocket in capsid protein VP1 that could be targeted by capsid-binding antiviral compounds. IMPORTANCE: Honeybee pollination is required for agricultural production and to sustain the biodiversity of wild flora. However, honeybee populations in Europe and North America are under pressure from pathogens, including viruses that cause colony losses. Viruses from the family Dicistroviridae can cause honeybee infections that are lethal, not only to individual honeybees, but to whole colonies. Here, we present the virion structure of an Aparavirus, Israeli acute bee paralysis virus (IAPV), a member of a complex of closely related viruses that are distributed worldwide. IAPV exhibits unique structural features not observed in other picorna-like viruses. Capsid protein VP1 of IAPV does not contain a hydrophobic pocket, implying that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections.
- MeSH
- Dicistroviridae ultrastructure MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray MeSH
- Models, Molecular MeSH
- Protein Multimerization MeSH
- Bees virology MeSH
- Virion ultrastructure MeSH
- Capsid Proteins chemistry metabolism MeSH
- Viral Structures * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Capsid Proteins MeSH
Two previously reported holoprotein crystal forms of the flavodoxin-like E. coli protein WrbA, diffracting to 2.6 and 2.0 A resolution, and new crystals of WrbA apoprotein diffracting to 1.85 A, are refined and analysed comparatively through the lens of flavodoxin structures. The results indicate that differences between apo- and holoWrbA crystal structures are manifested on many levels of protein organization as well as in the FMN-binding sites. Evaluation of the influence of crystal contacts by comparison of lattice packing reveals the protein's global response to FMN binding. Structural changes upon cofactor binding are compared with the monomeric flavodoxins. Topologically non-equivalent residues undergo remarkably similar local structural changes upon FMN binding to WrbA or to flavodoxin, despite differences in multimeric organization and residue types at the binding sites. Analysis of the three crystal structures described here, together with flavodoxin structures, rationalizes functional similarities and differences of the WrbAs relative to flavodoxins, leading to a new understanding of the defining features of WrbAs. The results suggest that WrbAs are not a remote and unusual branch of the flavodoxin family as previously thought but rather a central member with unifying structural features.
- MeSH
- Anabaena chemistry MeSH
- Apoproteins chemistry metabolism MeSH
- Escherichia coli chemistry MeSH
- Flavin Mononucleotide chemistry metabolism MeSH
- Flavodoxin chemistry metabolism MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray * MeSH
- Models, Molecular MeSH
- Protein Multimerization MeSH
- Escherichia coli Proteins chemistry metabolism MeSH
- Repressor Proteins chemistry metabolism MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Apoproteins MeSH
- Flavin Mononucleotide MeSH
- Flavodoxin MeSH
- Escherichia coli Proteins MeSH
- Repressor Proteins MeSH
- WrbA protein, E coli MeSH Browser