Most cited article - PubMed ID 30867054
A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. Despite substantial research efforts, our understanding of its pathogenesis remains incomplete, limiting the development of effective treatments and preventive strategies. The potential role of microbial pathogens in AD etiology has gained increasing attention. Various human microbial pathogens have been identified in the brains of AD patients, leading to the pathogen hypothesis, which posits that these microorganisms may disrupt the brain's immune regulation and homeostasis. In this study, we examine the effects of proteins from three pathogens, Borrelia burgdorferi, HSV-1, and Porphyromonas gingivalis, on the aggregation of antimicrobial peptide amyloid-β (Aβ). Three of the four studied proteins were found to attenuate the aggregation of Aβ42 by interacting with its soluble form and inhibiting primary and secondary pathways. These in vitro findings were further supported by experiments using mature neurons derived from human pluripotent stem cells, which showed an increased accumulation of amyloid precursor protein (APP) aggregates upon infection with HSV-1 or exposure to the OspA surface protein from B. burgdorferi. Together, our results provide mechanistic insights into how pathogen-associated proteins modulate Aβ42 aggregation, contributing to an understanding of their potential role in AD pathogenesis.
- Keywords
- Alzheimer’s disease, amyloid-β, amyloids, neuroinflammation, pathogen, virus,
- MeSH
- Alzheimer Disease * metabolism microbiology MeSH
- Amyloid beta-Peptides * metabolism MeSH
- Amyloid beta-Protein Precursor metabolism MeSH
- Bacterial Proteins * metabolism pharmacology MeSH
- Borrelia burgdorferi metabolism MeSH
- Humans MeSH
- Herpesvirus 1, Human metabolism MeSH
- Neurons metabolism drug effects MeSH
- Peptide Fragments * metabolism MeSH
- Porphyromonas gingivalis metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- amyloid beta-protein (1-42) MeSH Browser
- Amyloid beta-Peptides * MeSH
- Amyloid beta-Protein Precursor MeSH
- Bacterial Proteins * MeSH
- Peptide Fragments * MeSH
Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.
- MeSH
- Amyotrophic Lateral Sclerosis * metabolism pathology MeSH
- C-Reactive Protein * metabolism MeSH
- DNA-Binding Proteins * deficiency metabolism MeSH
- Frontotemporal Lobar Degeneration * metabolism pathology MeSH
- Humans MeSH
- Nerve Net * metabolism pathology MeSH
- Neural Stem Cells cytology MeSH
- Neuroglia cytology MeSH
- Neurons * cytology metabolism MeSH
- Nerve Tissue Proteins * metabolism MeSH
- Reproducibility of Results MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- C-Reactive Protein * MeSH
- DNA-Binding Proteins * MeSH
- neuronal pentraxin MeSH Browser
- Nerve Tissue Proteins * MeSH
- TARDBP protein, human MeSH Browser
The involvement of microRNAs (miRNAs) in orchestrating self-renewal and differentiation of stem cells has been revealed in a number of recent studies. And while in human pluripotent stem cells, miRNAs have been directly linked to the core pluripotency network, including the cell cycle regulation and the maintenance of the self-renewing capacity, their role in the onset of differentiation in other contexts, such as determination of neural cell fate, remains poorly described. To bridge this gap, we used three model cell types to study miRNA expression patterns: human embryonic stem cells (hESCs), hESCs-derived self-renewing neural stem cells (NSCs), and differentiating NSCs. The comprehensive miRNA profiling presented here reveals novel sets of miRNAs differentially expressed during human neural cell fate determination in vitro. Furthermore, we report a miRNA expression profile of self-renewing human NSCs, which has been lacking to this date. Our data also indicates that miRNA clusters enriched in NSCs share the target-determining seed sequence with cell cycle regulatory miRNAs expressed in pluripotent hESCs. Lastly, our mechanistic experiments confirmed that cluster miR-17-92, one of the NSCs-enriched clusters, is directly transcriptionally regulated by transcription factor c-MYC.
- Keywords
- Cell cycle, Human pluripotent stem cells, Neural stem cells, miRNA sequencing, microRNA,
- MeSH
- Cell Differentiation genetics MeSH
- Embryonic Stem Cells MeSH
- Humans MeSH
- MicroRNAs * genetics metabolism MeSH
- Neural Stem Cells * metabolism MeSH
- Gene Expression Profiling MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MicroRNAs * MeSH
One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.
- Keywords
- cryopreservation, human induced pluripotent stem cells (hiPSCs), human injection device, immunosuppressed adult pig, neural precursor cells (NPCs), spinal cord,
- MeSH
- Cell Differentiation physiology MeSH
- Adult MeSH
- Genetic Vectors genetics MeSH
- Induced Pluripotent Stem Cells * physiology transplantation MeSH
- Rats MeSH
- Humans MeSH
- Spinal Cord MeSH
- Brain MeSH
- Neural Stem Cells * physiology transplantation MeSH
- Specimen Handling methods MeSH
- Tissue and Organ Harvesting methods MeSH
- Swine MeSH
- Cellular Reprogramming * genetics physiology MeSH
- Graft Survival physiology MeSH
- Injections, Spinal * adverse effects instrumentation methods MeSH
- Stem Cell Transplantation * adverse effects instrumentation methods MeSH
- Sendai virus MeSH
- Treatment Outcome MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The critical requirements in developing clinical-grade human-induced pluripotent stem cells-derived neural precursors (hiPSCs-NPCs) are defined by expandability, genetic stability, predictable in vivo post-grafting differentiation, and acceptable safety profile. Here, we report on the use of manual-selection protocol for generating expandable and stable human NPCs from induced pluripotent stem cells. The hiPSCs were generated by the reprogramming of peripheral blood mononuclear cells with Sendai-virus (SeV) vector encoding Yamanaka factors. After induction of neural rosettes, morphologically defined NPC colonies were manually harvested, re-plated, and expanded for up to 20 passages. Established NPCs showed normal karyotype, expression of typical NPCs markers at the proliferative stage, and ability to generate functional, calcium oscillating GABAergic or glutamatergic neurons after in vitro differentiation. Grafted NPCs into the striatum or spinal cord of immunodeficient rats showed progressive maturation and expression of early and late human-specific neuronal and glial markers at 2 or 6 months post-grafting. No tumor formation was seen in NPCs-grafted brain or spinal cord samples. These data demonstrate the effective use of in vitro manual-selection protocol to generate safe and expandable NPCs from hiPSCs cells. This protocol has the potential to be used to generate GMP (Good Manufacturing Practice)-grade NPCs from hiPSCs for future clinical use.
- Keywords
- brain grafting, human-induced pluripotent stem cells (hiPSCs), immunodeficient rat, manual selection, neural precursor cells (NPCs), spinal cord grafting,
- MeSH
- Cell Differentiation MeSH
- Induced Pluripotent Stem Cells * MeSH
- Rats MeSH
- Leukocytes, Mononuclear MeSH
- Humans MeSH
- Neural Stem Cells * MeSH
- Neurons metabolism MeSH
- Sendai virus genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
It is currently challenging to adequately model the growth and migration of glioblastoma using two-dimensional (2D) in vitro culture systems as they quickly lose the original, patient-specific identity and heterogeneity. However, with the advent of three-dimensional (3D) cell cultures and human-induced pluripotent stem cell (iPSC)-derived cerebral organoids (COs), studies demonstrate that the glioblastoma-CO (GLICO) coculture model helps to preserve the phenotype of the patient-specific tissue. Here, we aimed to set up such a model using mature COs and develop a pipeline for subsequent analysis of cocultured glioblastoma. Our data demonstrate that the growth and migration of the glioblastoma cell line within the mature COs are significantly increased in the presence of extracellular matrix proteins, shortening the time needed for glioblastoma to initiate migration. We also describe in detail the method for the visualization and quantification of these migrating cells within the GLICO model. Lastly, we show that this coculture model (and the human brain-like microenvironment) can significantly transform the gene expression profile of the established U87 glioblastoma cell line into proneural and classical glioblastoma cell types.
- Keywords
- GLICO, cerebral organoids, glioblastoma, induced pluripotent stem cells,
- MeSH
- Cell Culture Techniques methods MeSH
- Cell Line MeSH
- Glioblastoma * genetics metabolism MeSH
- Humans MeSH
- Brain MeSH
- Tumor Microenvironment MeSH
- Organoids metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Cyanobacterial blooms are known sources of environmentally-occurring retinoid compounds, including all-trans and 9-cis retinoic acids (RAs). The developmental hazard for aquatic organisms has been described, while the implications for human health hazard assessment are not yet sufficiently characterized. Here, we employ a human neural stem cell model that can differentiate in vitro into a mixed culture of neurons and glia. Cells were exposed to non-cytotoxic 8-1000 nM all-trans or 9-cis RA for 9-18 days (DIV13 and DIV22, respectively). Impact on biomarkers was analyzed on gene expression (RT-qPCR) and protein level (western blot and proteomics) at both time points; network patterning (immunofluorescence) on DIV22. RA exposure significantly concentration-dependently increased gene expression of retinoic acid receptors and the metabolizing enzyme CYP26A1, confirming the chemical-specific response of the model. Expression of thyroid hormone signaling-related genes remained mostly unchanged. Markers of neural progenitors/stem cells (PAX6, SOX1, SOX2, NESTIN) were decreased with increasing RA concentrations, though a basal population remained. Neural markers (DCX, TUJ1, MAP2, NeuN, SYP) remained unchanged or were decreased at high concentrations (200-1000 nM). Conversely, (astro-)glial marker S100β was increased concentration-dependently on DIV22. Together, the biomarker analysis indicates an RA-dependent promotion of glial cell fates over neural differentiation, despite the increased abundance of neural protein biomarkers during differentiation. Interestingly, RA exposure induced substantial changes to the cell culture morphology: while low concentrations resulted in a network-like differentiation pattern, high concentrations (200-1000 nM RA) almost completely prevented such network patterning. After functional confirmation for implications in network function, such morphological features could present a proxy for network formation assessment, an apical key event in (neuro-)developmental Adverse Outcome Pathways. The described application of a human in vitro model for (developmental) neurotoxicity to emerging environmentally-relevant retinoids contributes to the evidence-base for the use of differentiating human in vitro models for human health hazard and risk assessment.
- Keywords
- Developmental neurotoxicity, Retinoid signaling, Thyroid hormone signaling,
- MeSH
- Alitretinoin * toxicity MeSH
- Cell Differentiation MeSH
- Humans MeSH
- Neural Stem Cells * drug effects MeSH
- Receptors, Retinoic Acid genetics metabolism MeSH
- Retinoids pharmacology MeSH
- Tretinoin * toxicity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Alitretinoin * MeSH
- Receptors, Retinoic Acid MeSH
- Retinoids MeSH
- Tretinoin * MeSH
Cerebral organoids are a prolific research topic and an emerging model system for neurological diseases in human neurobiology. However, the batch-to-batch reproducibility of current cultivation protocols is challenging and thus requires a high-throughput methodology to comprehensively characterize cerebral organoid cytoarchitecture and neural development. We report a mass spectrometry-based protocol to quantify neural tissue cell markers, cell surface lipids, and housekeeping proteins in a single organoid. Profiled traits probe the development of neural stem cells, radial glial cells, neurons, and astrocytes. We assessed the cell population heterogeneity in individually profiled organoids in the early and late neurogenesis stages. Here, we present a unifying view of cell-type specificity of profiled protein and lipid traits in neural tissue. Our workflow characterizes the cytoarchitecture, differentiation stage, and batch cultivation variation on an individual cerebral organoid level.
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer's disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
- Keywords
- Alzheimer’s disease, Astrocytes, Cerebral organoids, In vitro differentiation, Microglia, Neural differentiation, Neural progenitors, Neural stem cells, Neurons, iPSCs,
- MeSH
- Alzheimer Disease * genetics metabolism therapy MeSH
- Induced Pluripotent Stem Cells * metabolism MeSH
- Humans MeSH
- Neural Stem Cells * metabolism MeSH
- Neurons metabolism MeSH
- Organoids pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The 'gold standard' treatment of severe neonatal jaundice is phototherapy with blue-green light, which produces more polar photo-oxidation products that are easily excreted via the bile or urine. The aim of this study was to compare the effects of bilirubin (BR) and its major photo-oxidation product lumirubin (LR) on the proliferation, differentiation, morphology, and specific gene and protein expressions of self-renewing human pluripotent stem cell-derived neural stem cells (NSC). Neither BR nor LR in biologically relevant concentrations (12.5 and 25 µmol/L) affected cell proliferation or the cell cycle phases of NSC. Although none of these pigments affected terminal differentiation to neurons and astrocytes, when compared to LR, BR exerted a dose-dependent cytotoxicity on self-renewing NSC. In contrast, LR had a substantial effect on the morphology of the NSC, inducing them to form highly polar rosette-like structures associated with the redistribution of specific cellular proteins (β-catenin/N-cadherin) responsible for membrane polarity. This observation was accompanied by lower expressions of NSC-specific proteins (such as SOX1, NR2F2, or PAX6) together with the upregulation of phospho-ERK. Collectively, the data indicated that both BR and LR affect early human neurodevelopment in vitro, which may have clinical relevance in phototherapy-treated hyperbilirubinemic neonates.
- Keywords
- bilirubin, neurodevelopment, phototherapy,
- Publication type
- Journal Article MeSH