Most cited article - PubMed ID 30970942
The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites
The conducting polymer poly(2-(1H-pyrrole-1-yl)ethyl methacrylate (PPEMA) was synthesized by conventional atom transfer radical polymerization for the first time from free as well as surface-bonded alkyl bromide initiator. When grafted from the surface of carbonyl iron (CI) a substantial conducting shell on the magnetic core was obtained. Synthesis of the monomer as well as its polymer was confirmed using proton spectrum nuclear magnetic resonance (1H NMR). Polymers with various molar masses and low dispersity showed the variability of this approach, providing a system with a tailorable structure and brush-like morphology. Successful grafting from the CI surface was elucidate by transmission electron microscopy and Fourier-transform infrared spectroscopy. Very importantly, thanks to the targeted nanometer-scale shell thickness of the PPEMA coating, the magnetization properties of the particles were negligibly affected, as confirmed using vibration sample magnetometry. Smart elastomers (SE) consisting of bare CI or CI grafted with PPEMA chains (CI-PPEMA) and silicone elastomer were prepared and dynamic mechanical properties as well as interference shielding ones were investigated. It was found that short polymer chains grafted to the CI particles exhibited the plasticizing effect, which might be interesting from the magnetorheological point of view, and more interestingly, in comparison to the neat CI-based sample, it provided enhanced electromagnetic shielding of nearly 30 dB in thickness of 500 μm. Thus, SE containing the newly synthesized CI-PPEMA hybrid particles also exhibited considerably enhanced damping factor and proper mechanical performance, which make the material highly promising from various practical application points of view.
- Keywords
- atom transfer radical polymerization, interference shielding, magnetic particle, polymer brushes, smart elastomer,
- MeSH
- Electromagnetic Phenomena MeSH
- Methacrylates * chemistry MeSH
- Polymerization MeSH
- Polymers chemistry MeSH
- Surface Properties MeSH
- Pyrroles * MeSH
- Iron MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Methacrylates * MeSH
- Polymers MeSH
- Pyrroles * MeSH
- Iron MeSH
In this work, graphene oxide (GO) particles were modified with a nano-sized poly(butyl acrylate) (PBA) layer to improve the hydrophobicity of the GO and improve compatibility with PVDF. The improved hydrophobicity was elucidated using contact angle investigations, and exhibit nearly 0° for neat GO and 102° for GO-PBA. Then, the neat GO and GO-PBA particles were mixed with PVDF using a twin screw laboratory extruder. It was clearly shown that nano-sized PBA layer acts as plasticizer and shifts glass transition temperature from -38.7 °C for neat PVDF to 45.2 °C for PVDF/GO-PBA. Finally, the sensitivity to the vibrations of various frequencies was performed and the piezoelectric constant in the thickness mode, d33, was calculated and its electrical load independency were confirmed. Received values of the d33 were for neat PVDF 14.7 pC/N, for PVDF/GO 20.6 pC/N and for PVDF/GO-PBA 26.2 pC/N showing significant improvement of the vibration sensing and thus providing very promising systems for structural health monitoring and data harvesting.
- Keywords
- SI-ATRP, compatibility, d33, dielectric properties, graphene oxide, poly(vinylidene fluoride), vibration sensing,
- MeSH
- Acrylates MeSH
- Fluorocarbon Polymers MeSH
- Graphite MeSH
- Polyvinyls * chemistry MeSH
- Vibration * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acrylates MeSH
- Fluorocarbon Polymers MeSH
- Graphite MeSH
- graphene oxide MeSH Browser
- n-butyl acrylate MeSH Browser
- polyvinylidene fluoride MeSH Browser
- Polyvinyls * MeSH
This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation.
- Keywords
- SI-ATRP, compatibility, conductivity, grafting, graphene oxide, smart composites,
- Publication type
- Journal Article MeSH
This article is focused on the facile procedure for 2D graphene oxide (GO) fabrication, utilizing reversible de-activation polymerization approach and therefore enhanced compatibility with surrounding polymer matrix. Such tunable improvement led to a controllable sensing response after irradiation with light. The neat GO as well as surface initiated atom transfer radical polymerization (SI-ATRP) grafted particles were investigated by atomic force microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. To confirm the successful surface reduction, X-ray photoelectron spectroscopy and Raman spectroscopy was utilized. The composites in form of non-woven fiber mats containing ungrafted GO and controllably grafted GO with compact layer of polymer dispersed in poly(vinylidene-co-hexafluoropropylene) were prepared by electrospinning technique and characterized by scanning electron microscopy. Mechanical performance was characterized using dynamic mechanical analysis. Thermal conductivity was employed to confirm that the conducting filler was well-dispersed in the polymer matrix. The presented controllable coating with polymer layer and its impact on the overall performance, especially photo-actuation and subsequent contraction of the material aiming on the sensing applications, was discussed.
- Keywords
- PBMA, PVDF-co-HFP, elastomers, graphene oxide, light-induced actuation, sensing,
- Publication type
- Journal Article MeSH
In this study, a verified process of the "grafting from" approach using surface initiated atom transfer radical polymerization was applied for the modification of a graphene oxide (GO) surface. This approach provides simultaneous grafting of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains and a controllable reduction of the GO surface. This allows the fine tuning of its electrical conductivity, which is a crucial parameter for applications of such hybrid composite particles in electrorheological (ER) suspensions. The successful coating was confirmed by transmission electron microscopy and Fourier-transform infrared spectroscopy. The molecular characteristics of PHEMATMS were characterized by gel permeation chromatography. ER performance was elucidated using a rotational rheometer under various electric field strengths and a dielectric spectroscopy to demonstrate the direct impact of both the relaxation time and dielectric relaxation strength on the ER effectivity. Enhanced compatibility between the silicone oil and polymer-modified GO particles was investigated using contact angle measurements and visual sedimentation stability determination. It was clearly proven that the modification of the GO surface improved the ER capability of the system due to the tunable conductivity during the surface-initiated atom transfer radical polymerization (SI-ATRP) process and the enhanced compatibility of the GO particles, modified by polymer containing silyl structures, with silicone oil. These unique ER properties of this system appear very promising for future applications in the design of ER suspensions.
- Keywords
- (2-(trimethylsilyloxy)ethyl methacrylate), electrorheology, SI-ATRP, graphene oxide, reduction,
- Publication type
- Journal Article MeSH
Surface-initiated atom transfer radical polymerization (SI-ATRP) was used to modify graphene oxide (GO) particles with poly(butyl methacrylate) (PBMA) chains. This procedure facilitated the single-step fabrication of a hybrid material with tailored conductivity for the preparation of a suspension in silicone oil with enhanced sedimentation stability and improved electrorheological (ER) activity. PBMA was characterized using various techniques, such as gel permeation chromatography (GPC) and 1H NMR spectroscopy. Thermogravimetric analysis through on-line investigation of the Fourier transform infrared spectra, together with transmission electron microscopy, X-ray photoelectron microscopy, and atomic force microscopy, were successfully used to confirm GO surface modification. The ER performance was investigated using optical microscopy images and steady shear rheometry, and the mechanism of the internal chain-like structure formation was elucidated. The dielectric properties confirmed enhanced ER performance owing to an increase in relaxation strength to 1.36 and decrease in relaxation time to 5 × 10-3 s. The compatibility between GO and silicone oil was significantly influenced by covalently bonded PBMA polymer brushes on the GO surface, showing enhanced compatibility with silicone oil, which resulted in the considerably improved sedimentation stability. Furthermore, a controlled degree of reduction of the GO surface ensured that the suspension had improved ER properties.
- Publication type
- Journal Article MeSH
This study serves to combine two approaches into one single step, to achieve a significant improvement of the light-induced actuation capabilities. Graphene oxide (GO) is an inert material, from the electrical and thermal conductivity point of view, and is incompatible with the usually-used poly(dimethylsiloxane) (PDMS) matrix. During surface-modification by surface-initiated atom transfer radical polymerization, the GO was transformed into a conducting and compatible material with the PDMS showing enormous light-induced actuation capability. The GO surface-modification with poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains was confirmed by transmission electron microscopy and thermogravimetric analysis, with an on-line monitoring of gasses using FTIR. The improved compatibility was elucidated using contact angle and dielectric properties measurements. The PHEMATMS shell was investigated using gel permeation chromatography and nuclear magnetic resonance. The improved electric conductivity was measured using the four-point probe method and by Raman spectroscopy. The very important mechanical properties were elucidated using dynamic mechanical analysis, and with the help of thermo-mechanic analysis for the light-induced actuation. The excellent actuation capabilities observed, with changes in the length of around 0.8% at 10% pre-strain, are very promising from the point of view of applications.
- Keywords
- SI-ATRP, dielectrics, dynamic mechanical analysis, graphene oxide, light-induced actuation, reduction,
- Publication type
- Journal Article MeSH
This study is focused on the controllable reduction of the graphene oxide (GO) during the surface-initiated atom transfer radical polymerization technique of glycidyl methacrylate (GMA). The successful modification was confirmed using TGA-FTIR analysis and TEM microscopy observation of the polymer shell. The simultaneous reduction of the GO particles was confirmed indirectly via TGA and directly via Raman spectroscopy and electrical conductivity investigations. Enhanced compatibility of the GO-PGMA particles with a polydimethylsiloxane (PDMS) elastomeric matrix was proven using contact angle measurements. Prepared composites were further investigated through the dielectric spectroscopy to provide information about the polymer chain mobility through the activation energy. Dynamic mechanical properties investigation showed an excellent mechanical response on the dynamic stimulation at a broad temperature range. Thermal conductivity evaluation also confirmed the further photo-actuation capability properties at light stimulation of various intensities and proved that composite material consisting of GO-PGMA particles provide systems with a significantly enhanced capability in comparison with neat GO as well as neat PDMS matrix.
- Keywords
- SI-ATRP, dielectrics, dynamic mechanical analysis, graphene oxide, light-stimuli material, photo-responsive material, poly (glycidyl methacrylate), reduction,
- Publication type
- Journal Article MeSH