During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.
When confronted with an infection, immune cells are rapidly activated to fight the threat. However, like all cells, they require energy to act. While most cells reduce their activity when nutrients are scarce, the immune system cannot afford to do so, as halting its response could put the entire body at risk from infection. It is not clear how immune cells manage this complex nutritional budgeting. Previous studies of fruit fly larvae infected with a parasitoid wasp revealed that immune cells secure extra energy by releasing a molecule called adenosine. This slows the metabolism of non-immune tissues, leaving more nutrients available for immune cells. However, the exact mechanism that immune cells use to produce adenosine remained uncertain. To further examine this process, Nedbalova et al. – who are part of the research group that carried out the previous work – extracted activated immune cells from a parasitoid-infected larva and fed them a labelled amino acid. Tracing this label revealed an increase in the number of chemical units known as methyl groups that had been added to molecules within the cell. This process, known as methylation, can regulate metabolic activity within cells and produces adenosine as a byproduct. Further genetic studies showed that if nutrient supplies were sufficient, the immune cells recycled this adenosine back into ATP, the body’s main energy currency. This suggests that if there were not enough nutrients to do this, the excess adenosine would slow the metabolism of non-immune cells, therefore securing more nutrients for the immune cells. Therefore, Nedbalova et al. hypothesise that these two processes could form the basis of a feedback mechanism that allows the immune cells to regulate their energy demands. Taken together, the findings suggest that adenosine may act as a sensor to reflect immune activity, with it being released when the cells are stimulated and recycled if they have enough energy. This hypothesis still requires further testing but, as adenosine pathways are present across all organisms, it could have implications for many physiological and disease-related processes.
- Klíčová slova
- D. melanogaster, S-adenosylhomocysteinase, SAM transmethylation pathway, adenosine kinase, adenosine signaling, adenylate kinase, biochemistry, chemical biology, immunology, inflammation, privileged immunity,
- MeSH
- adenosin * metabolismus MeSH
- adenosinkinasa metabolismus MeSH
- adenosintrifosfát * metabolismus MeSH
- Drosophila melanogaster * imunologie parazitologie metabolismus růst a vývoj MeSH
- larva imunologie metabolismus parazitologie růst a vývoj MeSH
- metylace MeSH
- S-adenosylmethionin * metabolismus MeSH
- sršňovití MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosin * MeSH
- adenosinkinasa MeSH
- adenosintrifosfát * MeSH
- S-adenosylmethionin * MeSH
BACKGROUND: Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis. METHODS: Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR). RESULTS: Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression. CONCLUSIONS: These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.
- Klíčová slova
- Phlebotomus perniciosus, Antimicrobial peptides, Azadirachtin, Ecdysone,
- MeSH
- antimikrobiální peptidy genetika farmakologie MeSH
- ekdyson * MeSH
- hmyz - vektory účinky léků genetika parazitologie imunologie MeSH
- hmyzí proteiny genetika metabolismus MeSH
- larva * účinky léků imunologie genetika MeSH
- limoniny * farmakologie MeSH
- Phlebotomus * účinky léků genetika parazitologie imunologie MeSH
- shazování tělního pokryvu účinky léků MeSH
- signální transdukce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimikrobiální peptidy MeSH
- azadirachtin MeSH Prohlížeč
- ekdyson * MeSH
- hmyzí proteiny MeSH
- limoniny * MeSH
Insects rely on the innate immune system for defense against pathogens, some aspects of which are under hormonal control. Here we provide direct experimental evidence showing that the juvenile hormone-binding protein (mJHBP) of Aedes aegypti is required for the regulation of innate immune responses and the development of mosquito blood cells (hemocytes). Using an mJHBP-deficient mosquito line generated by means of CRISPR-Cas9 gene editing technology we uncovered a mutant phenotype characterized by immunosuppression at the humoral and cellular levels, which profoundly affected susceptibility to bacterial infection. Bacteria-challenged mosquitoes exhibited significantly higher levels of septicemia and mortality relative to the wild type (WT) strain, delayed expression of antimicrobial peptides (AMPs), severe developmental dysregulation of embryonic and larval hemocytes (reduction in the total number of hemocytes) and increased differentiation of the granulocyte lineage. Interestingly, injection of recombinant wild type mJHBP protein into adult females three-days before infection was sufficient to restore normal immune function. Similarly, injection of mJHBP into fourth-instar larvae fully restored normal larval/pupal hemocyte populations in emerging adults. More importantly, the recovery of normal immuno-activation and hemocyte development requires the capability of mJHBP to bind JH III. These results strongly suggest that JH III functions in mosquito immunity and hemocyte development in a manner that is perhaps independent of canonical JH signaling, given the lack of developmental and reproductive abnormalities. Because of the prominent role of hemocytes as regulators of mosquito immunity, this novel discovery may have broader implications for the understanding of vector endocrinology, hemocyte development, vector competence and disease transmission.
- MeSH
- Aedes genetika růst a vývoj imunologie mikrobiologie MeSH
- hemocyty imunologie mikrobiologie MeSH
- hmyzí proteiny genetika imunologie MeSH
- juvenilní hormony imunologie MeSH
- larva genetika růst a vývoj imunologie mikrobiologie MeSH
- přirozená imunita MeSH
- Serratia marcescens fyziologie MeSH
- transportní proteiny genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- hmyzí proteiny MeSH
- juvenile hormone-binding protein, insect MeSH Prohlížeč
- juvenilní hormony MeSH
- transportní proteiny MeSH
European foulbrood (EFB) is an infectious disease affecting honeybee larvae caused by the bacterium Melissococcus plutonius. The enzyme-linked immunosorbent assay (ELISA) is the gold standard for antibody-based bacteria detection, however, its sensitivity is not high enough to reveal early-stage EFB infection. Photon-upconversion nanoparticles (UCNPs) are lanthanide-doped nanomaterials that emit light of shorter wavelength under near-infrared (NIR) excitation and thus avoid optical background interference. After conjugation with specific biorecognition molecules, UCNPs can be used as ultrasensitive labels in immunoassays. Here, we introduce a method for conjugation of UCNPs with streptavidin based on copper-free click chemistry, which involves surface modification of UCNPs with alkyne-modified bovine serum albumin (BSA) that prevents the non-specific binding and provides reactive groups for conjugation with streptavidin-azide. To develop a sandwich upconversion-linked immunosorbent assay (ULISA) for M. plutonius detection, we have prepared a rabbit polyclonal anti-Melissococcus antibody. The specific capture of the bacteria was followed by binding of biotinylated antibody and UCNP-BSA-streptavidin conjugate for a highly sensitive upconversion readout. The assay yielded an LOD of 340 CFU mL-1 with a wide working range up to 109 CFU mL-1, which is 400 times better than the LOD of the conventional ELISA. The practical applicability of the ULISA was successfully demonstrated by detecting M. plutonius in spiked real samples of bees, larvae and bottom hive debris. These results show a great potential of the assay for early diagnosis of EFB, which can prevent uncontrolled spreading of the infection and losses of honeybee colonies.
- MeSH
- Enterococcaceae imunologie izolace a purifikace MeSH
- fotony MeSH
- imunoanalýza metody MeSH
- larva imunologie metabolismus MeSH
- limita detekce MeSH
- nanočástice chemie MeSH
- oxid křemičitý chemie MeSH
- protilátky bakteriální imunologie MeSH
- včely růst a vývoj mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid křemičitý MeSH
- protilátky bakteriální MeSH
The biochemical and molecular mechanisms underlying insect cold acclimation prior to cold stress are relatively well explored, but the mechanisms linked to recovery and repair after cold stress have received much less attention. Here we focus on recovery from cold stress in the larvae of the vinegar fly (Drosophila melanogaster) that were exposed to two physiologically distinct cold stress situations: supercooling (S, survival > 95%) and freezing (F, survival < 10%), both at -5 °C. We analysed the metabolic and transcriptomic responses to cold stress via GC-MS/LC-MS and whole-genome microarrays, respectively. Both stresses (S and F) caused metabolic perturbations which were transient in supercooled larvae but deeper and irreversible in frozen larvae. Differential gene expression analysis revealed a clear disparity in responses to supercooling and freezing (less than 10% of DE genes overlapped between S and F larvae). Using GO term enrichment analysis and KEGG pathway mapping, we identified the stimulation of immune response pathways as a strong candidate mechanism for coping with supercooling. Supercooling caused complex transcriptional activation of innate immunity potential: from Lysozyme-mediated degradation of bacterial cell walls, recognition of pathogen signals, through phagocytosis and lysosomal degradation, Toll and Imd signaling, to upregulation of genes coding for different antimicrobial peptides. The transcriptomic response to freezing was instead dominated by degradation of macromolecules and death-related processes such as autophagy and apoptosis. Of the 45 upregulated DE genes overlapping in responses to supercooling and freezing, 26 were broadly ascribable to defense and repair functions.
- Klíčová slova
- Cold hardiness, Drosophila, Gene expression, Immune response, Metabolome, Vinegar fly,
- MeSH
- Drosophila melanogaster imunologie metabolismus MeSH
- fyziologický stres imunologie MeSH
- kationické antimikrobiální peptidy metabolismus MeSH
- larva imunologie metabolismus MeSH
- nízká teplota MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kationické antimikrobiální peptidy MeSH
Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene (RasV12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia.
- Klíčová slova
- Genetics of Immunity, Ras, hemocyte, insect immunity, nematodes, oncogene,
- MeSH
- Drosophila MeSH
- fenotyp * MeSH
- hemocyty imunologie MeSH
- kachexie * genetika imunologie MeSH
- larva genetika imunologie MeSH
- leukemie * genetika imunologie MeSH
- modely nemocí na zvířatech MeSH
- přirozená imunita * MeSH
- proteiny Drosophily genetika imunologie MeSH
- protoonkogenní proteiny p21(ras) genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny Drosophily MeSH
- protoonkogenní proteiny p21(ras) MeSH
OBJECTIVE: Expression of the gene encoding Der-p2 allergen-like protein in the castor bean tick Ixodes ricinus is induced by blood intake. Tick Der-p2 allergen-like protein belongs to a diverse family of ML proteins that includes major allergens of house dust mites, human MD-2 or similar proteins from Drosophila melanogaster. In ticks, genes encoding proteins belonging to the ML protein family were identified, but their protein products have not been characterized yet. METHODS: A gene encoding tick Der-p2 allergen-like protein was amplified from cDNA of engorged I. ricinus female using the gene-specific primers designed on a basis of partial sequences of related allergen-like genes. The tissue and state specific patterns of expression of the gene were analysed. The IgE binding activity of the produced recombinant protein was studied by use of ELISA. RESULTS: Analysis of the expression pattern showed that the gene encoding the tick Der-p2 allergen-like protein is strongly induced by the bloodmeal in gut and haemolymph throughout all tick developmental stages. Der-p2 allergen-like protein possesses a putative lipid-binding site, according to the comparisons with the related proteins. The ability of tick Der-p2 allergen-like protein to bind immunoglobulin E (IgE) was revealed. DISCUSSION: The presence of a putative lipid-binding domain in Der-p2 allergen-like protein and its ability to interact with IgE might indicate the involvement of the protein in the tick's immune response.
- MeSH
- alergeny chemie genetika imunologie metabolismus MeSH
- antigeny roztočů domácího prachu chemie genetika imunologie metabolismus MeSH
- Dermatophagoides pteronyssinus imunologie MeSH
- imunoglobulin E imunologie metabolismus MeSH
- klíště genetika růst a vývoj imunologie metabolismus MeSH
- larva růst a vývoj imunologie MeSH
- lymfocytární antigen 96 chemie imunologie MeSH
- molekulární modely MeSH
- nymfa růst a vývoj imunologie MeSH
- rekombinantní proteiny chemie genetika imunologie metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alergeny MeSH
- antigeny roztočů domácího prachu MeSH
- imunoglobulin E MeSH
- lymfocytární antigen 96 MeSH
- rekombinantní proteiny MeSH
Insect larvae develop in decaying organic matter and their defence against various microorganisms must therefore be highly efficient. In the present study, we explored the transcriptional kinetics and induction levels of eight genes in Sarcophaga bullata larvae after infection or aseptic injury. Using real-time PCR, we studied the time-dependent immune response of larvae of the fleshfly S. bullata. We compared the mRNA levels of eight selected genes in induced and non-induced larvae. The third-instar larvae of S. bullata were induced by injecting a bacterial suspension of Escherichia coli, Staphylococcus aureus or Pseudomonas aeruginosa, or by simple aseptic injury with an entomological pin. We used intact larvae as a control for basal mRNA expression. Total RNA was isolated from the whole body, fat body and haemocytes. We determined the mRNA levels of genes encoding sapecin, transferrin, prophenoloxidase 1 and 2, storage-binding protein, cathe psin L, sarcocystatin, and 26/29 kDa protease. We found that there was massive up-regulation of genes encoding the fleshfly peptide sapecin, as well as the protein transferrin. We also detected down-regulation of, or no change in, the expression of genes that encode prophenoloxidase 1 and 2, storage-binding protein, cathepsin L, sarcocystatin, and 26/29 kDa protease.
- MeSH
- Diptera genetika imunologie mikrobiologie MeSH
- Escherichia coli imunologie MeSH
- larva genetika imunologie mikrobiologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- Pseudomonas aeruginosa imunologie MeSH
- regulace genové exprese * MeSH
- Staphylococcus imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We chose the larvae of fleshfly Sarcophaga bullata to map the peptide and protein immune response. The hemolymph of the third-instar larvae of S. bullata was used for isolation. The larvae were injected with bacterial suspension to induce an antimicrobial response. The hemolymph was separated into crude fractions, which were subdivided by RP-HPLC, gel electrophoresis, and free-flow electrophoresis. In several fractions, we determined significant antimicrobial activities against the pathogenic bacteria Escherichia coli, Staphylococcus aureus, or Pseudomonas aeruginosa. Among antimicrobially active compounds we identified dipeptide beta-alanyl-L-tyrosine, protein transferrin, and two variants of peptide sapecin. We also partially characterized two novel antimicrobially active polypeptides; odorant-binding protein 99b, and a peptide which remains unidentified.
- MeSH
- Diptera růst a vývoj imunologie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- hmyzí proteiny chemie imunologie MeSH
- larva imunologie MeSH
- molekulární sekvence - údaje MeSH
- molekulová hmotnost MeSH
- peptidové mapování MeSH
- sekvence aminokyselin MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
Herbivorous animals can play a very important role in spreading trichinellosis. In the study presented here, the susceptibility and distribution of Trichinella spiralis infection was examined in 16 goat kids. The goats were inoculated with 10,000 T. spiralis larvae isolated by artificial digestion methods. The animals were necropsied per two animals in weekly intervals, and the larval burdens in different muscle tissue and anti-Trichinella antibodies measured with the indirect enzyme-linked immunosorbent assay (ELISA) serological method using excretory-secretory (E/S) antigen for detecting anti-Trichinella antibodies were assessed during the experiment. T. spiralis larval burden was maximal at 6 weeks postinoculation (480-5,057 larvae/g according to locality), and the larvae were also found in the myocardium (0.77 larvae/g). In this paper, our next step was to compare the specificity and the time of seroconversion by means of ELISA based on E/S antigen prepared from T. spiralis. Antibody response was detected in all 16 goats. The ELISA test carried out showed the first increments in optical density 2 weeks postinfection (p.i.), reached their peak 4 weeks p.i., and remained elevated from that day until the end of the experiment (10 weeks p.i.). These results indicated that specific anti-Trichinella antibodies in goats persist for a relatively long time.
- MeSH
- ELISA MeSH
- imunoglobulin G krev MeSH
- kozy MeSH
- larva imunologie MeSH
- nemoci koz imunologie parazitologie MeSH
- protilátky helmintové krev MeSH
- svaly parazitologie MeSH
- Trichinella spiralis růst a vývoj imunologie izolace a purifikace MeSH
- trichinelóza imunologie parazitologie veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imunoglobulin G MeSH
- protilátky helmintové MeSH