Zeta potential Dotaz Zobrazit nápovědu
Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.
- Klíčová slova
- DNA isolation, magnetic, nanoparticles, particle size, zeta potential,
- MeSH
- biotechnologie metody MeSH
- DNA chemie izolace a purifikace MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- magnetismus metody MeSH
- mikroskopie elektronová rastrovací MeSH
- nanočástice chemie ultrastruktura MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
The zeta potential (ZP) is an oft-reported measure of the macroscopic charge state of solid surfaces and colloidal particles in contact with solvents. However, the origin of this readily measurable parameter has remained divorced from the molecular-level processes governing the underlying electrokinetic phenomena, which limits its usefulness. Here, we connect the macroscopic measure to the microscopic realm through nonequilibrium molecular dynamics simulations of electroosmotic flow between parallel slabs of the hydroxylated (110) rutile (TiO2) surface. These simulations provided streaming mobilities, which were converted to ZP via the commonly used Helmholtz-Smoluchowski equation. A range of rutile surface charge densities (0.1 to -0.4 C/m2), corresponding to pH values between about 2.8 and 9.4, in RbCl, NaCl, and SrCl2 aqueous solutions, were modeled and compared to experimental ZPs for TiO2 particle suspensions. Simulated ZPs qualitatively agree with experiment and show that "anomalous" ZP values and inequalities between the point of zero charge derived from electrokinetic versus pH titration measurements both arise from differing co- and counterion sorption affinities. We show that at the molecular level the ZP arises from the delicate interplay of spatially varying dynamics, structure, and electrostatics in a narrow interfacial region within about 15 Å of the surface, even in dilute salt solutions. This contrasts fundamentally with continuum descriptions of such interfaces, which predict the ZP response region to be inversely related to ionic strength. In reality the properties of this interfacial region are dominated by relatively immobile and structured water. Consequently, viscosity values are substantially greater than in the bulk, and electrostatic potential profiles are oscillatory in nature.
The effect of the zeta potential of nano zero-valent iron (nZVI) and carbocatalyst on the activation of persulfate was investigated. The oxidation experiments were performed on three different compounds, with variously modified nZVI and three distinct carbocatalysts. From the obtained results, an evident linear correlation between nanoparticles' zeta potential and reaction rate constants of these three compounds oxidation may be observed. This phenomenon is not mechanism-specific and occurs for the radical and non-radical processes. The present work indicates the critical influence of the surface charge of nZVI and carbocatalysts on the persulfate catalytic activation.
- Publikační typ
- časopisecké články MeSH
Phosphorus-containing heterocyclic cationic surfactants alkyldimethylphenylphospholium bromides with the alkyl chain length 14 to 18 carbon atoms were used for the stabilization of silver nanodispersions. Zeta potential of silver nanodispersions ranges from +35 to +70 mV, which indicates the formation of stable silver nanoparticles (AgNPs). Long-chain heptadecyl and octadecyl homologs of the surfactants series provided the most intensive stabilizing effect to AgNPs, resulting in high positive zeta potential values and smaller diameter of AgNPs in the range 50-60 nm. A comparison with non-heterocyclic alkyltrimethylphosphonium surfactants of the same alkyl chain length showed better stability and more positive zeta potential values for silver nanodispersions stabilized with heterocyclic phospholium surfactants. Investigations of biological activity of phospholium-capped AgNPs are represented by the studies of antimicrobial activity and cytotoxicity. While cytotoxicity results revealed an increased level of HepG2 cell growth inhibition as compared with the cytotoxicity level of silver-free surfactant solutions, no enhanced antimicrobial action of phospholium-capped AgNPs against microbial pathogens was observed. The comparison of cytotoxicity of AgNPs stabilized with various non-heterocyclic ammonium and phosphonium surfactants shows that AgNPs capped with heterocyclic alkyldimethylphenylphospholium and non-heterocyclic triphenyl-substituted phosphonium surfactants have the highest cytotoxicity among silver nanodispersions stabilized by the series of ammonium and phosphonium surfactants.
- Klíčová slova
- Hep G2 cells, cytotoxicity, dynamic light scattering, phosphonium, silver nanoparticles, zeta potential,
- Publikační typ
- časopisecké články MeSH
The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.
- Klíčová slova
- Bioremediation, Contaminated sites, HCH, Oxidative stress responses, Persistent organic pollutants, Soil fungi, Tolerance,
- MeSH
- biodegradace MeSH
- biotransformace * MeSH
- ekosystém MeSH
- hexachlorcyklohexan analýza metabolismus MeSH
- houby metabolismus MeSH
- isomerie MeSH
- látky znečišťující půdu analýza metabolismus MeSH
- oxidační stres MeSH
- Penicillium metabolismus MeSH
- půda MeSH
- půdní mikrobiologie * MeSH
- tolerance léku MeSH
- Trichoderma metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- hexachlorcyklohexan MeSH
- látky znečišťující půdu MeSH
- půda MeSH
This article aims to explore interaction of nanoparticles ZnO, TiO2 and CeO2 with bovine serum albumin (BSA). The samples of nanoparticles were laboratory prepared and compared with commercial nanoparticles. Nanoparticles were characterized by SEM, zeta potential and size measurements. Adsorption of particles took place at pH where the zeta potential of the protein and nanoparticles was opposite. Then the zeta potential and size distribution were measured and the amount of protein needed to reduce the zeta potential of nanoparticles to zero was determined. The changes of BSA structure were also observed by Circular Dichroism (CD). The change of BSA structure after the adsorption on nanoparticles was confirmed. The content of BSA α-helix structure varies during experiments from 13 to 77% in dependence of concentration of nanoparticles. The interaction of TiO2 and BSA was confirmed also by the Surface Plasmon Resonance (SPR) technique. On laboratory prepared TiO2 was bound amount of 73,4 pg·mm-2.
- Klíčová slova
- BSA, CeO(2), TiO(2), Zeta potential, ZnO,
- MeSH
- cer chemie MeSH
- nanočástice chemie MeSH
- oxid zinečnatý chemie MeSH
- povrchové vlastnosti MeSH
- sérový albumin hovězí chemie MeSH
- skot MeSH
- titan chemie MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cer MeSH
- ceric oxide MeSH Prohlížeč
- oxid zinečnatý MeSH
- sérový albumin hovězí MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
We present a refinement of the backbone torsion parameters ε and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as εζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput. 2012, 7(9), 2886-2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined parameters decreased the backbone RMS deviations in B-DNA MD simulations. In the antiparallel guanine quadruplex (G-DNA) the εζOL1 modification improved the description of non-canonical α/γ backbone substates, which were shown to be coupled to the ε/ζ torsion potential. Thus, the refinement is suggested as a possible alternative to the current ε/ζ torsion potential, which may enable more accurate modeling of nucleic acids. However, long-term testing is recommended before its routine application in DNA simulations.
- Publikační typ
- časopisecké články MeSH
A commercial formulation of poly(tetrafluoroethylene) (PTFE) sheets were surface modified by using non-thermal air at 40 kHz frequency (DC) and 13.56 MHz radiofrequency (RF) at different durations and powers. In order to assess possible changes of PTFE surface properties, zeta potential (ζ), isoelectric points (IEPs) determinations, contact angle measurements as well as Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) imaging were carried out throughout the experimentation. The overall outcome indicated that ζ-potential and surface energy progressively changed after each treatment, the IEP shifting to lower pH values and the implicit differences, which are produced after each distinct treatment, giving new surface topographies and chemistry. The present approach might serve as a feasible and promising method to alter the surface properties of poly(tetrafluoroethylene).
- Klíčová slova
- Poly(tetrafluoroethylene), Teflon, contact angle measurement, plasma treatment, surface energy, zeta potential,
- Publikační typ
- časopisecké články MeSH
A set of cerium dioxide nanoparticles (CeO2NPs) was synthesized by precipitation in water-alcohol solutions under conditions when the physical-chemical parameters of synthesized NPs were controlled by changing the ratio of the reaction components. The size of CeO2NPs is controlled largely by the dielectric constant of the reaction solution. An increase of the percentage of Ce3+ions at the surface was observed with a concomitant reduction of the NP sizes. All synthesized CeO2NPs possess relatively high positive values of zeta-potential (ζ > 40 mV) suggesting good stability in aqueous suspensions. Analysis of the valence- and size-dependent rate of hydrogen peroxide decomposition revealed that catalase/peroxidase-like activity of CeO2NPs is higher at a low percentage of Ce3+at the NP surface. In contrast, smaller CeO2NPs with a higher percentage of Ce3+at the NP surface display a higher oxidase-like activity.
- Klíčová slova
- catalase/peroxidase activity, cerium dioxide nanoparticles, chemical state, morphology, synthesis, zeta-potential,
- Publikační typ
- časopisecké články MeSH
The solvent casting method was used for five types of polyvinylidene difluoride (PVDF) nanocomposite film preparation. The effect of nanofillers in PVDF nanocomposite films on the structural, phase, and friction and mechanical properties was examined and compared with that of the natural PVDF film. The surface topography of PVDF nanocomposite films was investigated using a scanning electron microscope (SEM) and correlative imaging (CPEM, combinate AFM and SEM). A selection of 2D CPEM images was used for a detailed study of the spherulitic morphologies (grains size around 6-10 μm) and surface roughness (value of 50-68 nm). The chemical interactions were evaluated by Fourier transform infrared spectroscopy (FTIR). Dominant polar γ-phase in the original PVDF, PVDF_ZnO and PVDF_ZnO/V, the most stable non-polar α-phase in the PVDF_V_CH nanocomposite film and mixture of γ and α phases in the PVDF_V and PVDF_ZnO/V_CH nanocomposite films were confirmed. Moderately hydrophilic PVDF nanocomposite films with water contact angle values (WCA) in the range of 58°-69° showed surface stability with respect to the Zeta potential values. The effect of positive or negative Zeta-potential values of nanofillers (ζn) on the resulting negative Zeta-potential values (ζ) of PVDF nanocomposite films was demonstrated. Interaction of PVDF chains with hydroxy groups of vermiculite and amino and imino groups of CH caused transformation of γ-phase to α. The friction properties were evaluated based on the wear testing and mechanical properties were evaluated from the tensile tests based on Young's modulus (E) and tensile strength (Rm) values. Used nanofillers caused decreasing of friction and mechanical properties of PVDF nanocomposite material films.
- Klíčová slova
- PVDF nanocomposite films, Zeta-potential values, chlorhexidine, correlative imaging, friction and mechanical properties, nanofillers, surface roundness, vermiculite, zinc oxide,
- Publikační typ
- časopisecké články MeSH